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During this visit we have expanded our investigations on the application of Gene 
Ontology-driven similarity (GOS) to functional genomics.  We focused on two specific 
problems: 

• Study of significant associations between GOS and tissue-specific gene co-
expression in a multi-cellular organism (mouse). 

• Study of a method for reconstructing functional networks of genes and proteins 
using GOS in yeast. 

 
The direct outcomes of this research are reflected in two publications: 
 
1) H. Wang, H. Zheng, F. Azuaje, O. Bodenreider, A. Chesneau, “Linking Gene 
Ontology-Driven Similarity and Gene Co-Expression in Mouse”, submitted to the 
conference on Research in Computational Molecular Biology (RECOMB 2006). 
 
2) F. Azuaje1, O. Bodenreider, H. Wang, H. Zheng, “Gene Ontology-Driven Similarity 
for Supporting the Prediction of Integrated Functional Networks”, to be submitted to 
BMC Bioinformatics. 
 
This visit also allowed us to revise a paper previously submitted: 
 
3) F. Azuaje, H.Wang, H. Zheng, O. Bodenreider and A. Chesneau, “Predictive 
integration of Gene Ontology-driven similarity and functional interactions”, to be 
submitted to Bioinformatics. 
 
Furthermore, the following paper was completed and submitted during this visit: 
 
4) H. Wang, F. Azuaje, H. Zheng and O. Bodenreider, “seGOsa:  Software environment 
for Gene Ontology-driven similarity assessment”, to be submitted to Bioinformatics. 
 
Please find attached papers 1 and 3 as part of this report. 
 
Yours sincerely, 
 
Francisco Azuaje, PhD. 
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Abstract. The integration of multiple sources of information is becoming prevalent 
in post-genome biology.  An important task toward that goal is the quantitative 
assessment of relationships between relevant predictive resources. Here we assess 
key associations between the functional similarity of pairs of gene products and their 
expression correlation. Two approaches to computing similarity among genes based 
on knowledge extracted from the Gene Ontology are compared: Average and highest 
average.  We investigate integrative properties of a tissue-specific data set from 
mouse, which describes expression profiles during retinal development, and 
annotations derived from the Mouse Genome Informatics database. We show that 
highly co-expressed genes are more likely to display a high degree of functional 
similarity for all GO hierarchies than other pairs of genes.  GO-driven similarity 
information is best used in combination with gene co-expression as it helps narrow 
down the space of biological significance in terms of the number of genes and gene 
pairs. In practice, this integration may be useful to support the selection of relevant 
genes and pairs of co-expressed genes. The highest average similarity assessment 
method appears to be more suitable to stress functional differences between co-
expressed genes. This investigation suggests that GO-driven similarity is a valuable 
complementary predictive resource for interactome prediction problems in multi-
cellular organisms.  

1   Introduction 

In recent years, a number of public efforts have been focusing on the annotation and curation of 
gene-specific functional data. The outcome originating from these efforts can now be accessed 
through several databases, which provide exceptional depth and coverage of the functional data 
available for gene products [1]. The combination of biological knowledge extracted from diverse 
resources has become a fundamental goal to achieve comprehensive, large-scale functional 
predictions, such as the inference of networks of interactions in different model organisms.  
The Gene OntologyTM (GO) [1] is one of such important functional knowledge resources, which 
has been designed to offer controlled, structured vocabularies to describe key domains of 
molecular biology across model organisms. It has traditionally facilitated the development of 
several organism-specific databases and enabled the implementation of cross-database queries. 
Moreover, its ability to provide detailed classification, controlled vocabulary and organized 
terminology has made it relevant to support functional predictive applications. GO has been used 
as a gold standard for functional prediction applications and to estimate the biological 
significance of gene expression analyses. FatiGO, for example, may be applied to identify GO 
terms that are significantly over- or under-represented in clusters of genes [2].  



Recent research has found significant relationships between different types of functional datasets. 
For example, the correlation between gene co-expression, protein complex membership and gene 
regulatory interactions has been reported. Previous research has shown significant relationships 
between functional and sequence-based similarities of pairs of genes [3]. We have also 
demonstrated significant relationships between gene co-expression and GO-driven similarity in 
Sacharomices cerevisiae [4].  More recently GO annotations have been used to support the 
prediction of protein-protein interactions in S. cerevisiae [5].  However, significant relationships 
between GO-driven similarity and other functional properties have not been adequately studied in 
multi-cellular model organisms. 
Here we investigate relationships between GO-driven similarity, which takes into account 
information associated with both the structure of the GO and the information content of its terms, 
and gene expression correlation in Mus musculus. The primary objective of this study is to 
expand our understanding of the relationships between GO-driven gene similarity and expression 
correlation in multi-cellar organisms. Our hypothesis is that combining GO-driven similarity and 
expression correlation results in better prediction of functional association than any method used 
in isolation. A secondary objective is to compare two approaches to aggregating between-term 
similarity for computing between-gene similarity.  
The remainder of this paper is organized as follows. Section 2 introduces the GO and some of its 
applications in functional genomics, followed by a description of GO-driven similarity 
assessment techniques in Section 3. We implemented two approached to computing between-
gene similarity, both based on an information-theoretic approach. Section 4 describes the datasets 
under study. Section 5 presents the results. This paper concludes with a discussion of the 
relevance of the results and possible applications. 

2   The Gene Ontology and its Applications 

2.1 The Gene Ontology 

Starting in 1998 as a collaboration between three model organism databases: FlyBase [6], the 
Saccharomyces Genome database (SGD) [7] and the Mouse Genome Informatics (MGI) database 
[8], the GO project endeavors to provide a set of structured, controlled vocabularies and 
classifications for key biological domains that can be used to describe gene products in any 
organism [1]. The GO consists of three hierarchies that describe attributes of gene products in 
three non-overlapping domains of molecular biology: Molecular function (MF), biological 
process (BP), and cellular component (CC). MF represents information on the role played by 
individual gene products, for example G-protein coupled receptor activity. BP refers to a 
biological objective accomplished by one or more ordered assemblies of molecular function such 
as signal transduction. CC represents the cellular localization of the gene product, including 
cellular structure and complexes, for example nucleus or anaphase-promoting complex. 
GO terms and their relationships within each hierarchy form of directed acyclic graph (DAG) 
that represents a network in which each term – except for the root – has one or more parent terms. 
For example, the GO term negative regulation of cellular process is a child of both regulation of 
cellular process and negative regulation of biological process in the BP hierarchy as illustrated in 
Fig. 1. The relationship between a child and its parent can be either “is a” (is a kind of) or “part 
of”. The former is used when the child is more specific than its parent term (is_a relationship); the 
latter when the child term refers to a part while the parent term refers to the whole of which the 
child is a component (part_of relationship). From the BP hierarchy, for example, the term 
regulation of cellular process is a kind of regulation of biological process and a component of 
cellular process. The majority of GO links are “is a” links. 



 
Fig. 1 Partial view of the BP hierarchy in the GO. Rounded rectangles represent terms and arrows 
stand for edges indicating the relationships between two terms. p represents the probability of 
finding a gene annotated to this GO term in the MGI (August 2005 release). 

The terms defined by the GO have been used to annotate in a consistent way the genes and gene 
products described in multiple model organism databases. The source of each annotation is 
recorded, e.g., a literature reference, another database or a computational analysis. A standard set 
of evidence codes is used to indicate the nature of evidence on which a particular annotation is 
based. For example, if an annotation is inferred from the timing or location of expression of a 
gene, the evidence code associated with this annotation will be IEP (inferred from expression 
pattern). IEA (inferred from electronic annotation) is used to denote annotations that depend 
directly on computation or automated transfer of annotations from a database, the accuracy of 
which has not been verified by curators. Understandably, such annotations tend to be less reliable. 
The products of GO-driven projects, including vocabularies, annotations, databases and 
accompanying tools, are freely available from the GO website: http://www.geneontology.org/. 

2.2 Overview of Applications of the Gene Ontology to Functional Genomics 

It has been demonstrated that the GO may facilitate large-scale applications for functional 
geneomics. One such application is the integration of GO annotations into gene expression data 
clustering tasks [2]. Such an application is now referred to as ontological analysis of gene 
expression data and is becoming the de facto standard for post-processing high throughput 
experiments [9]. Examples of ontological analysis tools include FatiGO [2] and GOToolBox [10]. 
A comprehensive review of these systems can be found in [9]. 
In addition to providing gene annotations, the GO also provides a structure for organizing genes 
into biologically relevant groupings. Such information can be used as an important prior 
biological knowledge base to facilitate functional prediction, hypothesis generation and validation 
studies. For example, based on the analysis of phenotypic annotations extracted from the Munich 
Information Center for Protein Sequences (MIPS) and GO annotations, King et al. [11] inferred 
gene-phenotype associations in yeast using decision trees. Lægreid et al. [12] used supervised 
learning methods to predict GO biological process annotation terms from microarray-derived 
time-series gene expression data. Adryan and Schuh [13] recently developed a clustering system 



that incorporates GO information for selecting subsets of gene expression data. Hierarchical 
clustering based on the Pearson’s correlation coefficient was applied to those genes with GO 
terms defined by the user. 
Unlike most methods which rely solely on the hierarchical organization of GO terms, our 
approach to computing gene similarity takes advantage of the information content of GO terms. 
The following section introduces the problem of measuring between-term and between-gene 
similarity in the GO. 

3   Gene Product Similarity Measurement Using GO Annotations 

The similarity between two genes g1 and g2 is computed by aggregating at the gene level the 
similarity values computed at the term level between the GO terms to which these genes have 
been annotated. The methods used for computing between-term similarity and aggregating 
schemes at the gene level are presented below. 
 
Between-term similarity 
 
The first step towards measuring similarity among gene products using GO annotations is to 
establish between-term similarity within each hierarchy. Given a pair of terms, c1 and c2, 
traditional methods for measuring their similarity are based on an edge counting approach, i.e. 
counting the number of edges between the nodes associated with these two terms in the ontology. 
A small number of edges between two terms corresponds to highly similar terms. Conversely, 
terms farther apart tend to be less similar. One of the main limitations of this approach is that it 
assumes that nodes and edges are uniformly distributed in an ontology, which is not an accurate 
assumption in the GO because it exhibits variable link densities. For example, the pair “cellular 
process” and “regulation of biological process” has the same similarity as the pair “negative 
regulation of cell adhesion” and “negative regulation of cell differentiation” by using this 
method. This is because these two pairs have an immediate common parent term. However, terms 
in the latter pair appear to be semantically more closely related than in the former. 
An alternative method to measure similarity between two terms is based on the assessment of 
their information content, which exploits information-theoretic principles to reflect semantic 
similarity between two terms. Let C be the set of terms in the GO. The information content (IC) 
of a term, , can be quantified as follows: Cc∈

))(log()( cpcIC −=  (1) 

Where p(c) is the probability of finding term c and a child of c in the annotation database under 
analysis. Based on the assumption that the more information two terms share in common, the 
more similar they are, three semantic similarity measures have been developed. Resnik’s [14], 
Lin’s [15] and Jiang’s [16] metrics have been studied elsewhere as possible approaches to 
calculating GO-driven similarity [3], [4]. Resnik’s method does not differentiate the similarity of 
any pair of terms in a sub-hierarchy as long as they have the same lowest common ancestor. The 
Resnik’s values can vary between 0 and infinity, which is not a straightforward way to reflect 
similarity. Jiang’s method deals with similar issues, but high values reflect dissimilarity rather 
than similarity. Lin’s similarity model has been shown to produce both biologically meaningful 
and consistent similarity predictions. Given terms, ci and cj , their Lin’s similarity is defined as: 
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Where S(ci, cj) represents the set of parent terms shared by both ci and cj , ‘max’ represents the 
maximum operator, and p(c) is the probability of finding c or one of its children in the annotation 
database being analyzed. It generates normalized similarity values between 0 and 1. 
 
Between-gene similarity 
 
After calculating the similarity between GO terms describing two gene products, it is then 
possible to establish the similarity between these two gene products. The basic idea is to combine 
the calculated similarities from the sets of GO terms used to describe the gene products. Given a 
pair of gene products, gi and gj, which are annotated by a set of terms Ai and Aj respectively, Lord 
et al. [3] used average values determined as the average inter-set similarity between terms from Ai 
and Ai, as shown in Equation (3).  
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where m and n are the number of terms included in Ai and Aj respectively, and sim(ck, cp) can be 
calculated using Lin’s model. This approach has been previously applied to structural and 
functional genomics. Nevertheless, this method does not always produce meaningful results.  For 
example, intuitively, the similarity between two genes having the same sets of annotation terms is 
expected to be equal to 1.  However, this is not true when several annotations within a hierarchy 
are assigned to the genes. It will define, for instance, SIM(gi, gj) = 0.5, for gi = gj when Ai and Aj 
are described by the same set of annotations with more than one GO term within a hierarchy. In 
order to address such a limitation we have introduced an alternative approach that selectively 
aggregates maximum inter-set similarity values [17] as follows: 
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From now on we will refer to the aggregation schemes based on (3) and (4) as the average and 
highest average similarity methods respectively. The procedure to establish gene-gene similarity 
using GO annotations in this study is summarized in Table 1. 

Table 1 GO-Based Similarity Measure  

1:  Initialization:  Download the latest version of GO database 
                              Find out the total number of gene products, N, associated with the 

root node of each  ontology. 
2:  Repeat establishing the information content for each GO term 

3:      Find out the number of gene products associated with each GO term, c, and its 
child terms, freq(c). 

4:       Calculate the probability of finding a child of c in the annotation database being 
analyzed as follows: N

)c(freq)c(p =  
5:        Compute the information content for each GO term using Equation (1) 
6:        Fill in GO information content table 
7: Until there is no term left 
8:  Repeat estimating  similarity value for each pair of genes, gi and gj. 
9:        Find a set of GO terms associated with each gene, Ai and Aj. 

10:      Calculate the Lin’s similarity value between terms from Ai to Aj using Equation 
(2). 



11:     Compute the average and maximum inter-set similarity values for each gene pair 
using Equations (3) and (4). 

12: Until There is no more gene pair left 

4   Data and Methods 

The GO annotations derived from the MGI (August 2005 release of the GO database) were 
analyzed to calculate the functional similarity of mouse gene products. Experiments ignored IEA 
annotations due to their lack of reliability. We concentrated on a mouse retina dataset from 
Dorrell et al. study [18], which contains gene expression profiles of thousands of genes in eight 
different time points (P0, P4, P8, P10, P12, P14, P21, and adult (P42)) during postnatal mouse 
retinal development.  This is the first dataset describing global gene expression profiles in the 
developing postnatal mouse retina.  It reflects different expression patterns during postnatal 
retinal development such as glial and neuronal differentiation, vascularization, and the onset of 
vision. A detailed description of this dataset can be found in [18]. 
Our analysis includes about one million gene pairs derived from this dataset for which GO 
annotations are available. For each pair of genes, the GO-based similarity in each hierarchy was 
compared to the absolute expression correlation value. Expression correlation was calculated 
using the Pearson correlation coefficient. The comparison was done separately for the three 
hierarchies of the GO. 

5 Results 

Fig. 2 summarizes the relationship between GO-driven highest average similarity (under BP) and 
the absolute expression correlation between pairs of gene products. For these and all subsequent 
figures, the axis of abscissas is divided into a number of absolute correlation intervals, and the 
axis of ordinates shows the mean similarity values detected in these intervals and their 95% 
confidence intervals. Gene pairs exhibiting absolute expression correlation close to 1 exhibit the 
highest similarity values. By excluding weakly correlated genes (absolute correlation values 
lower than 0.5) such a difference is even more significant (right panel of Fig. 2).  Similar trends 
were obtained from the average similarity method (Fig. 3) 
 

 
Fig. 2 GO-driven similarity (GOS) and absolute expression correlation (AC) for BP hierarchy.  
Mean similarity values for each correlation interval and their 95% confidence intervals. Between-



gene similarity was calculated using the highest average similarity method. Right panel depicts 
relationships after excluding a set of weakly correlated genes (AC values lower than 0.5). 

 
Fig. 3 GO-driven similarity (GOS) and absolute expression correlation (AC) for BP hierarchy.  
Mean similarity values for each correlation interval and their 95% confidence intervals. Between-
gene similarity was calculated using the average similarity method. Right panel depicts 
relationships after excluding a set of weakly correlated genes (AC values lower than 0.5). 

Figs. 4 and 5 show the results obtained from the application of the highest average and average 
similarity methods under the CC hierarchy respectively.  Figs. 6 and 7 summarize the 
relationships with regard to highest average and average similarity methods under the MF 
hierarchy respectively. Like in the BP hierarchy, in the CC and MF hierarchies only the most 
highly correlated gene pairs tend to exhibit the highest similarity values.  Moreover, the average 
and highest average similarity methods are able to capture similar relationships. They differ in the 
sense that in the latter method the distinction between the highest and lower correlation genes is 
more pronounced.  
 

 
Fig. 4 GO-driven similarity (GOS) and absolute expression correlation (AC) for CC hierarchy.  
Mean similarity values for each correlation interval and their 95% confidence intervals. Between-
gene similarity was calculated using the highest average similarity method. Right panel depicts 
relationships after excluding a set of weakly correlated genes (AC values lower than 0.5). 



 
Fig. 5 GO-driven similarity (GOS) and absolute expression correlation (AC) for CC hierarchy.  
Mean similarity values for each correlation interval and their 95% confidence intervals. Between-
gene similarity was calculated using the average similarity method. Right panel depicts 
relationships after excluding a set of weakly correlated genes (AC values lower than 0.5). 

 

 
Fig. 6 GO-driven similarity (GOS) and absolute expression correlation (AC) for MF hierarchy.  
Mean similarity values for each correlation interval and their 95% confidence intervals. Between-
gene similarity was calculated using the highest average similarity method. Right panel depicts 
relationships after excluding a set of weakly correlated genes (AC values lower than 0.5). 

 



 
Fig. 7 GO-driven similarity (GOS) and absolute expression correlation (AC) for MF hierarchy.  
Mean similarity values for each correlation interval and their 95% confidence intervals. Between-
gene similarity was calculated using the average similarity method. Right panel depicts 
relationships after excluding a set of weakly correlated genes (AC values lower than 0.5). 

6. Discussion  

Functional similarity and co-expression. This investigation demonstrated significant 
relationships between gene co-expression patterns and GO-driven similarity of pairs of genes for 
all three GO hierarchies. Overall, highly co-expressed genes tend to exhibit higher GO-driven 
similarity values than weakly co-expressed genes. However, a large number of highly co-
expressed genes also have relatively small GO-driven similarity values. These results further 
illustrate the limitations of functional prediction models solely based on gene expression data due 
to the presence of multiple spurious functional associations. The results also stress the complexity 
of the relationship between gene co-expression and functional associations in multi-cellular 
organisms. 
Assessment of GO-driven similarity. This research has also allowed us to assess two methods 
for computing GO-driven similarity: average and highest average. Overall, both methods are able 
to represent similar patterns. However, the results produced by the highest average method tend 
to be more easily interpretable ([0-1] range for similarity) and more suitable to quantitatively 
highlight functional differences between co-expressed genes (larger differences between groups 
of co-expressed genes). 

Biological interpretation. In terms of protein interactions, Figures 2 to 7 suggest the 
involvement of two main groups of genes. The first group is characterized by highly co-expressed 
genes with a high degree of GO-driven similarity, which may reflect the presence of complexes in 
this dataset. The second group (corresponding to the majority of the genes in the dataset) exhibits 
relatively low levels of co-expression and GO-driven similarity. This group may reflect – since a 
majority of these pair of genes are not coding for interacting proteins – transient interactions at 
particular intervals of the retinal development, such as transcription factor-cofactors interactions 
required to activate a developmental gene. In this case we may expect pairs of genes showing 
inconsistent relations between co-expression and GO-driven similarity, even when both products 
are linked into a pairwise interaction. 
Applications. This study confirms the feasibility of applying GO-driven similarity approaches to 
support the prediction of significant functional associations in multi-cellular organisms. More 
precisely, it suggests that GO-driven similarity and co-expression data may be best used in 



combination. Practically, it is difficult to establish a biological threshold for co-expression 
correlation: 0.9 or 0.8 would seem like high correlation values, but were shown to reflect limited 
functional similarity. In contrast, the use of GO-driven similarity information for these genes 
helps narrow down the space of biological significance. On most figures above, there is a 
breaking point around the value of 0.98 for co-expression correlation. In other words, the slope of 
the curve GO driven similarity/co-expression correlation differs dramatically on both sides of this 
value. This finding provides biological motivation for selecting the value of 0.98 (in this case) as 
the threshold for highly co-expressed genes. As shown in Fig. 8, threshold selection has important 
consequences in terms of the amount of human resources required for interpreting these data. In 
this example, setting the threshold to T=0.98, only 1440 pairs of genes would require further 
examination, compared to 8648 for T=0.95 and 104566 for T=0.80. Without the supporting 
evidence provided by GO-driven similarity, the threshold for co-expression correlation would 
have to be set to an arbitrary value. Setting this threshold too low would result in high costs for 
interpreting the data. Conversely, potentially relevant associations would be missed if the 
threshold is set too high. 
 

 
Fig. 8. Relationships between the number of genes, gene pairs and co-expression thresholds for 
BP hierarchy using the highest average similarity method.  

The results also suggest that, in the case of highly correlated genes, the GO-driven similarity 
approach may be used to predict GO terms for partially characterized gene products. One of the 
key applications may be, for example, to assign potentially novel GO terms to pairs of gene 
products based on their co-expression patterns. In order to support this task another important 
goal is to define in more detail which GO hierarchy encodes the most significant relationship with 
gene co-expression for specific groups of genes. 
Future work. To the best of our knowledge, this study is the first integrative analysis of GO-
driven similarity and gene co-expression reported for this M. musculus. We will expand this 
research for other multi-cellular organisms including C. elegans and Homo sapiens, as well as 
different tissue-specific expression datasets. This will allow us to gain a more complete view of 
the overlapping predictive properties between these types of data, which may further justify their 
incorporation, for instance, into large-scale interactome inference models. 
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