
Converting biological information
to the W3C Resource Description Framework (RDF):

Experience with Entrez Gene

Report

Lister Hill National Center for Biomedical
Communications (NLM/ NIH)

By: Satya S. Sahoo
Email: sahoo@cs.uga.edu

Under the supervision of: Dr. Olivier Bodenreider

1. Abstract
The Entrez Gene (EG) database stores gene related data from sequenced genomes and of
model organisms that are focus of active research [1]. We describe our experience in
transforming the EG database into W3C Resource Description Framework (RDF) [2].
Our work is part of a larger effort to create a biomedical repository comprising not only
information from structured resources (database and knowledge bases), but also from
biomedical text (e.g., MEDLINE), of which information is extracted by SemRep [3].
Using the eXtensible Stylesheet Language Transformation (XSLT) [4] approach, we
mapped the element tags of the EG XML representation to more intuitive relationship
names manually, and used them during the automatic conversion to RDF. Finally, we
store this RDF version of EG in the Oracle 10g [5] relational database with specific
support for storing and querying of native RDF data.

2. Introduction
The NCBI databases store different aspects of biological information ranging from gene
specific structured information (e.g., Entrez Gene) to textual data in biomedical
publications (e.g., PubMed). The information retrieved from sources like Entrez Gene
(EG) or the Online Mendelian Inheritance in Man (OMIM) [6] is represented in XML but
follows different data type definitions (DTD). Hence, queries across the different
National Center for Biotechnology Information (NCBI) data sources are only possible
through implementation of complex software applications. Moreover, within one data
source namely EG, a traditional relational database schema makes it extremely difficult
to query for information using the relationships between the concepts. For example, EG
does not include an element for ‘functional homology’, specifically in terms of coding for
given proteins. Hence, it is extremely difficult to issue queries to search for functionally
homologous genes (it will involve writing complex software that is very closely tied to
the current DTD of EG, hence extremely sensitive to changes in the DTD).

mailto:sahoo@cs.uga.edu

The RDF format is a W3C recommendation to represent information in a machine
understandable manner. An RDF repository consists of a set of assertions or triples.
These triples are constituted of three entities namely, the subject – the triple pertains to
this entity, the object – the entity that states something about the object and the predicate
– the relationship between the subject and the object. The RDF format allows us to focus
on the logical structure of the information in contrast to only representational format
(XML) or storage format (relational database). Hence, we have implemented a workflow
for conversion of EG information into RDF repository.

Our work is part of a larger effort to create a biomedical repository comprising not only
information from structured resources (database and knowledge bases), but also from
biomedical text (e.g., MEDLINE), of which information is extracted by SemRep [3]. This
effort is also a contribution to the BioRDF task [7], an initiative of the Semantic Web
Health Care and Life Sciences Interest Group at the W3C.

There are many issues involved in the conversion of XML data into RDF format
including using unique identifiers, preserving of the original semantics of the data being
converted, resolving bidirectional relationships and filtering redundant element tags from
the original EG record. Unlike traditional XML to XML conversion, XML to RDF
conversion should take into account the advantages of the RDF model in representing the
logical structure of the information and the modeling of the relationships between
concepts. The underlying objective of converting XML data into RDF is to capture the
semantics of the data and leverage this semantic in querying the repository to not only
retrieve the explicit but also the implicit knowledge through inference.

The rest of the report is organized as follows. Section 3 presents the implementation
details; section 4 presents preliminary results. In section 5, we discuss the various issues
involved in the transformation process and we conclude in section 6.

3. Implementation
We selected the use of XSLT based approach for converting the EG XML information
into RDF as this allowed the separation of the application from the conversion logic.
There have some efforts (“Ligand-Receptor Interaction, Molecular Interaction Networks,
Ontology Evolution” sub-task in BioRDF project,
http://esw.w3.org/topic/HCLSIG_BioRDF_Subgroup/Tasks)in converting biomedical data
into RDF using XQuery [11] or XPath [9] language combined with XML parsers. Using
the Java API for XML parsing (JAXP) as the platform to implement the application, we
incorporated the XML to RDF transformation logic in the XSLT stylesheet. To store the
RDF EG in the Oracle database, we used the Jena API [8] for conversion into n-triple
format. Figure 1 illustrates the complete workflow implemented by us.

The XSLT stylesheet used in this workflow, using the XPath language, is specific to the
EG database. As mentioned in section 1, we chose not to convert the element tags of the
native EG XML representation mechanically into the predicate of the RDF triples.
Instead, we manually converted the element tags of the native EG XML representation
into meaningful relationship names that intuitively conveyed the semantics of the

connection between the subject and the object. For example, the element <Gene-
track_geneid> is mapped to the more meaningful relationship named
‘has_unique_geneid’. This relationship also captures the uniqueness semantics of a
‘geneid’ associated with gene record in EG. Moreover, there are multiple redundant
elements tags as well as elements that formed multiple-layer containers around elements
with actual attributes and values. We created a mapping between such element tags and
the corresponding relationships, but we ignored the redundant or superfluous elements.
For example, the element tag <Date_std> is repeated twice as part of the <Gene-
track_update-date> and Gene-track_create-date> elements, which we ignore during the
mapping process as they are redundant.

Figure 1: The implementation workflow for creating an RDF repository of the NCBI Entrez Gene database

We started organizing these relationships into an ontology, which currently reflects the
native element tag nesting of the EG XML representation. Figure 2 illustrates the
structure of the relationships using a simple is-a hierarchy. We aim to use this ontology
as a repository of the knowledge used in creating the mapping between the element tags
and relationships used as predicates in the RDF, not only for EG but also for other NCBI
data sources. Additionally, we are exploring the inclusion of other relationships between
these entities in addition to the is-a relationships. Oracle 10g is designed to store native
RDF data and allows users to query these data using the native triple <subject, predicate,
object> model. Using the Jena API, we converted the EG RDF store into n-triple format
to populate the database. For example, the triple ‘genid:ARP69702
http://www.ncbi.nlm.nih.gov/dtd/NCBI_Entrezgene.dtd/has_unique_geneid"351"’ to n-triple
‘_:jA1<http://www.ncbi.nlm.nih.gov/dtd/NCBI_Entrezgene.dtd/has_unique_geneid>"351"’.

The use of inference rules on this RDF data repository, using the native Oracle 10g
interface, is the focus of our future work. We envision using this rule base to answer
specific queries relating to the biomedical domain and leverage the information from all
the NCBI data sources.

Figure 2: The hierarchy of relationships used as predicates in the RDF repository of Entrez Gene database

4. Results
We were able to successfully create an EG RDF information repository using the EG
XML as the source of information. We created 106 intuitive relationships corresponding
to the element tags of the native EG XML format. There were a total of 124 unique
element tags. This involved considering elements with attributes as two distinct elements,
one the element itself and another incorporating the attribute as part of the element name.
For example <Gene-track_status value> and <Gene-track_status>, where ‘value’ is
the attribute of the element <Gene-track_status> as two distinct elements. We discarded
repeated and superfluous element tags. Please see annexure A for a complete listing of
the element tags and the corresponding relationships. We use the Java language based
JAXP APIs to develop the application to implement the transformation and modeled the
conversion logic in the XSLT stylesheet. Thus, our implementation model allows us to
transform all the NCBI data sources into RDF by using data source specific stylesheets
without changing the application code.

Initially, we used one EG record to prototype our approach. We converted the EG record
for gene with EG ‘gene_id’ 351 to RDF. To ensure syntactic accuracy of the RDF file,
we used the W3C web-based RDF validating application
(http://www.w3.org/RDF/Validator/). The EG ‘gene_id’ 351 RDF gene record has 9245
triples.

For the complete EG data source, we started with 50 GB file in XML format (conforming
to the EG DTD), which was converted to a 39 GB RDF file. The primary reason for this
reduction in the size of the file is the ignoring of many elements in the original EG XML
format. As mentioned in section 3 and this section, we used 106 elements out of 124
unique element tags in an EG record. Subsequently, we converted it to 33GB n-triple
format file which was used to populate the Oracle 10g database. Till date, we have 411
million triples in the database. The population of the database is under progress at the
time of writing this report.

5. Discussion
The primary objective of the RDF data model of the NCBI data sources, in this case the
EG, is to faithfully model the logical structure of the data as present in the real world. It is
not necessary that the specific structure specified in the DTD of EG accurately depicts
that either in the nesting of the element tags or even the list of tags used to describe the
gene data. The RDF model assumes a flat structure with respect to the subject being
described and the different characteristics describing it, in turn. Hence, it is important to
decide whether to reflect the native nesting of elements in the EG XML format or modify
the structure to reflect one of the many possible perspectives of EG data. In our case, we
chose to reflect the nesting of the element tags in the original EG data source. But, we
believe that this may not necessarily be the best solution. For example, one possible
approach may involve completely ignoring the nesting of the native EG XML format and
listing all characteristics of a gene at the equal level for given gene.

The use of a specific identifier allows the unique identification of the nodes (subject and
object) and predicates in an RDF repository. But, there is no globally accepted
biomedical identifier schema that may be used. The bioinformatics community is
currently debating this issue and there are many candidate schemas that may be used
including the Life Science Identifier (LSID) [10] and solutions based on the HTTP
protocol (i.e., URIs (Universal Resource Identifiers), URLs (Universal Resource
Locators) and URNs (Universal Resource Names)). NLM resources such as the Unified
Medical Language System could provide the basis for the identification of biomedical
entities. As a temporary measure, we used the EG DTD URL
(http://www.ncbi.nlm.nih.gov/dtd/NCBI_Entrezgene.dtd/) as the namespace to create the
identifier of the entities in the RDF store. But, this may be changed with minimal effort,
by modifying the XSLT stylesheet; thereby taking advantage of the inherent modularity
of XSLT based transformations.

The relationships for corresponding element tags in the native EG XML representation
were created manually. We anticipate further interactions in the community to evolve
towards a more meaningful syntax of the relationships which may help in easier query
formulation and execution. This will also take into account the capabilities and limitation
of the Oracle 10g query interface, including the Java API based interface currently under
development.

6. Conclusion
We demonstrate an implementation to convert NCBI EG data into a RDF repository
using an XSLT approach. The transformation workflow decouples the application logic
from the transformation logic by using the JAXP APIs for application development and
the XSLT stylesheet for modeling the transformation logic. Further, instead of directly
converting the element tags in the native EG XML representation, we manually map
them to 106 intuitive relationships that we use as predicates in creating the RDF triples
for EG data source. We use the Oracle 10g relational database that supports storage and
retrieval of RDF data in its native format.

7. Acknowledgement
We acknowledge the contribution of Kelly Zeng in setting up the Oracle 10g relational
database and populating it through conversion of the EG RDF store into n-triples. We
also acknowledge May Cheh, Thomas C. Rindflesch, and Rob Logan for coordinating the
summer program for graduate students at the Lister Hill Center (NLM/NIH).

8. Reference
1. Maglott, D., Ostell, J., Pruitt, K.D., and Tatusova, T., “Entrez Gene: gene-centered

information at NCBI”, Nucleic Acids Res. 2005 January 1; 33(Database Issue): D54–D58.
2. Resource Description Framework (RDF), http://www.w3.org/TR/2004/REC-rdf-primer-

20040210/
3. Rindflesch, TC, Fiszman, M., “The Interaction of Domain Knowledge and Linguistic

Structure in Natural Language Processing: Interpreting Hypernymic Propositions in
Biomedical Text”, Journal of Biomedical Informatics. 2003;36(6):462-77.

4. XML Schema Language Transformation (XSLT), http://www.w3.org/TR/xslt
5. Alexander, N., Ravada S., “RDF Object Type and Reification in Oracle”—Technical White

Paper (http://download-east.oracle.com/otndocs/tech/semantic_web/pdf/rdf_reification.pdf)
6. Online Mendelian Inheritance in Man, OMIM (TM). McKusick-Nathans Institute for Genetic

Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology
Information, National Library of Medicine (Bethesda, MD), {date of download}. World
Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/

7. BioRDF subgroup: http://esw.w3.org/topic/HCLSIG_BioRDF_Subgroup
8. McBride, B. 2002. Jena: A Semantic Web Toolkit. IEEE Internet Computing 6, 6 (Nov.

2002), 55-59. DOI= http://dx.doi.org/10.1109/MIC.2002.1067737
9. XPath: http://www.w3.org/TR/xpath
10. Life Sciences Identifier (LSID) project: http://lsid.sourceforge.net/
11. XQuery: http://www.w3.org/TR/xquery/

Annex A

Entrez Gene Element Tag Relationship
<Entrezgene_track-info> has_entrezgene_track_info
<Gene-track> has_gene-track
<Gene-track_geneid> has_unique_geneid
<Gene-track_status value> <------------------------------>
<Gene-track_status> has_gene_track_status
<Gene-track_create-date> has_creation_date
<Date> <------------------------------>
<Date_std> <------------------------------>
<Date-std_year> has_year
<Date-std_month> has_month
<Date-std_day> has_day
<Gene-track_update-date> has_update_date
<Date-std_hour> has_hour
<Date-std_minute> has_minute
<Date-std_second> has_second
<Entrezgene_type value> <------------------------------>
<Entrezgene_type> has_entrezgene_type
<Entrezgene_source> has_source_of_gene
<BioSource> has_biosource
<BioSource_genome value> <------------------------------>
<BioSource_genome> has_genomic_source_of_gene
<BioSource_origin value> <------------------------------>
<BioSource_origin> has_biosource_origin_of_gene
<BioSource_org> has_biosource_organism
<Org-ref> has_reference_organism
<Org-ref_taxname> has_taxonomy_name
<Org-ref_common> has_common_name
<Org-ref_db> has_organism_reference_database
<Dbtag> <-------------------------------->
<Dbtag_db> has_database_name
<Dbtag_tag> <-------------------------------->
<Object-id> <-------------------------------->
<Object-id_id> has_object_id_value
<Org-ref_syn> has_synonym_for_referred_organism
<Org-ref_syn_E> has_synonym_for_referred_organism_E
<Org-ref_orgname> has_organism_reference_name
<OrgName> has_name_of_organism
<OrgName_name> <-------------------------------->
<OrgName_name_binomial> <-------------------------------->
<BinomialOrgName> has_binomial_organism_name
<BinomialOrgName_genus> has_genus
<BinomialOrgName_species> has_species
<OrgName_lineage> has_lineage_of_organism_name
<OrgName_gcode> has_organism_name_gene_code
<OrgName_mgcode> has_organism_name_mg_code
<OrgName_div> has_organism_name_div
<BioSource_subtype> has_biosource_subtype
<SubSource> has_sub_source
<SubSource_subtype value> <-------------------------------->
<SubSource_subtype> has_subsource_subtype

<SubSource_name> has_subsource_name
<Entrezgene_gene> has_entrezgene_gene_detail
<Gene-ref> has_gene_reference
<Gene-ref_locus> has_locus_of_gene_reference
<Gene-ref_desc> has_gene_reference_description
<Gene-ref_maploc> has_gene_reference_maplocation
<Gene-ref_db> has_gene_reference_database
<Gene-ref_syn> has_gene_reference_synonym
<Gene-ref_syn_E> has_gene_reference_synonym_E
<Entrezgene_prot> has_entrezgene_protein
<Prot-ref> has_protein_reference
<Prot-ref_name> has_protein_reference_name
<Prot-ref_name_E> has_protein_reference_name_E
<Entrezgene_summary> has_entrezgene_summary
<Entrezgene_location> has_entrezgene_location
<Maps> has_maps
<Maps_display-str> has_maps_display_string
<Maps_method> <-------------------------------->
<Maps_method_map-type> has_maps_method_map_type
<Entrezgene_gene-source> has_entrezgene_gene_source
<Gene-source> has_gene_source
<Gene-source_src> has_gene_source_first_string
<Gene-source_src-int> has_gene_source_integer
<Gene-source_src-str2> has_gene_source_second_string
<Entrezgene_locus> has_entrezgene_locus
<Gene-commentary> has_gene_commentary
<Gene-commentary_comment> has_comment_on_gene_commentary
<Gene-commentary_type> has_gene_commentary_type
<Gene-commentary_type value> <------------------------------>
<Gene-commentary_heading> has_gene_commentary_heading
<Gene-commentary_accession> has_gene_commentary_accession
<Gene-commentary_version> has_gene_commentary_version
<Gene-commentary_seqs> has_gene_commentary_sequence
<Seq-loc> <-------------------------------->
<Seq-loc_int> <-------------------------------->
<Seq-interval> has_sequence_interval
<Seq-interval_from> has_sequence_interval_from
<Seq-interval_to> has_sequence_interval_to
<Seq-interval_strand> has_sequence_interval_strand
<Na-strand> <has_na_strand>
<Na-strand value> <-------------------------------->
<Seq-interval_id> has_sequence_interval_id
<Seq-id> <-------------------------------->
<Seq-id_gi> has_sequence_id_gi
<Gene-commentary_products> has_gene_commentary_products
<Gene-commentary_label> has_gene_commentary_label
<Gene-commentary_genomic-coords> has_gene_commentary_genomics_coordinates
<Seq-loc_mix> has_sequence_location_mix
<Seq-loc_whole> has_whole_sequence_location
<Entrezgene_properties> has_entrezgene_properties
<Gene-commentary_source> has_source_of_gene_commentary
<Gene-commentary_properties> has_properties_of_gene_commentary
<Other-source> has_other_source
<Other-source_anchor> has_other_source_anchor

<Other-source_pre-text> has_other_source_pre_text
<Other-source_url> has_other_source_url
<Other-source_src> has_source_of_other_source
<Other-source_post-text> has_other_source_post_text
<Gene-commentary_refs> has_gene_commentary_reference
<Pub> has_publication
<Pub_pmid> has_publication_pmid
<PubMedId> has_publication_pubmedid
<Gene-commentary_text> has_gene_commentary_text
<Gene-commentary_update-date> has_gene_commentary_update_date
<Gene-commentary_create-date> has_gene_commentary_creation_date
<Entrezgene_comments> has_entrezgene_comments
<Entrezgene_homology> has_entrezgene_homology
<Entrezgene_unique-keys> has_entrezgene_unique_keys
<Entrezgene_xtra-index-terms> has_entrezgene_extra_index_terms
<Entrezgene_xtra-index-terms_E> has_entrezgene_extra_index_terms_E
<Entrezgene_xtra-properties> has_entrezgene_extra_properties
<Xtra-Terms> has_extra_terms
<Xtra-Terms_tag> has_extra_terms_tag
<Xtra-Terms_value> has_extra_terms_value

Annex B

The Entrez Gene XML representation of the proteins coded by Gene with geneid 351 (representative
fragment of XML with extra element tags to be valid XML)

Annex C

The Entrez Gene RDF representation of the proteins coded by Gene with geneid 351 (representative
fragment of RDF with extra element tags to be valid XML).

	Converting biological information�to the W3C Resource Descri
	Report
	Lister Hill National Center for Biomedical Communications (N
	By: Satya S. Sahoo
	Under the supervision of: Dr. Olivier Bodenreider

	Abstract
	Introduction
	Implementation
	Results
	Discussion
	Conclusion
	Acknowledgement
	Reference
	Annex A
	Entrez Gene Element Tag
	Relationship
	Annex B
	Annex C

