
Using the RxNorm Web Services API for Quality Assurance Purposes

Lee Peters, M.S., Olivier Bodenreider, M.D., PhD
U.S. National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA

{lpeters|obodenreider}@mail.nih.gov

Abstract

Auditing large, rapidly evolving terminological sys-
tems is still a challenge. In the case of RxNorm, a
standardized nomenclature for clinical drugs, we
argue that quality assurance processes can benefit
from the recently released application programming
interface (API) provided by RxNav. We demonstrate
the usefulness of the API by performing a systematic
comparison of alternative paths in the RxNorm
graph, over several thousands of drug entities. This
study revealed potential errors in RxNorm, currently
under review. The results also prompted us to modify
the implementation of RxNav to navigate the RxNorm
graph more accurately. The RxNorm web services
API used in this experiment is robust and fast.

Introduction

Auditing relations in biomedical terminologies gen-
erally requires the development of complex ad hoc
programs [1, 2]. Terminological systems such as the
Unified Medical Language System (UMLS),
SNOMED CT and RxNorm are published as rela-
tional tables. Traversing graphs of relations in these
systems typically requires multiple queries to the
database to be integrated into specific programs.

In the past few years, programming interfaces have
been developed for the UMLS [3, 4] and RxNorm
[5], as well as for generic terminology services, such
as the HL7 Common Terminology Services [6] and
their implementation through LexGrid [7]. Such ap-
plication programming interfaces (APIs) consist of a
set of functions that can be embedded in programs
(e.g., to get all the synonyms of a given concept),
allowing users to manipulate the terminology pro-
grammatically without having to perform low-level
queries against a database. One popular form of APIs
is web services, a collection of protocols (e.g., Sim-
ple Object Access Protocol or SOAP) and standards
(e.g., XML) for interchanging data between applica-
tions [8]. Users of the web services can use a variety
of languages such as Java and Perl to invoke the web
services.

The Web Services API recently released for RxNorm
provides various functions for exploring the relations
among drug entities in RxNorm. For this reason, it
 AMIA 2008 Symposium Pro
appears to be suitable for testing the consistency of
the relations represented in RxNorm. The objective
of this paper is to introduce to readers the functionali-
ty of the RxNorm API and demonstrate its usefulness
as a Quality Assurance tool in verifying the structure
and contents of the RxNorm data set.

Background

RxNorm is a standardized nomenclature for clinical
drugs developed by the National Library of Medicine
[9, 10]. The RxNorm data set is organized around
concepts with normalized drug names which can in-
clude information about ingredients, strengths and
dose forms. RxNorm uses “term types” (listed in Ta-
ble 1 below) to distinguish among these various kinds
of drug entities.

Term Type Example
Ingredient Cetirizine
Precise ingredient Cetirizine Dihydrochloride
Brand name Zyrtec
Clinical drug compo-
nent

Cetirizine 5 MG

Branded drug compo-
nent

Cetirizine 5 MG [Zyrtec]

Clinical drug name Cetirizine 5 MG Oral Tab-
Branded drug name Zyrtec 5 MG Oral Tablet
Clinical drug form Cetirizine Oral Tablet
Branded drug form Cetirizine Oral Tablet

[Zyrtec]
Dose form Oral Tablet

Table 1. RxNorm Term Types

The RxNorm drug entities are related to each other
by a well-defined set of named relationships. For
example, brand name concepts are related to branded
drug component concepts by the relationships ingre-
dient_of and has_ingredient. Figure 1 shows the rela-
tionships between the various kinds of drug entities.

RxNorm Web Services API. A browser called
RxNav1 was developed in 2004 to access the

1 http://mor.nlm.nih.gov/download/rxnav/
 ceedings Page - 591

RxNorm data set and display graphically all related
concepts and the relations between them. RxNav uses
web services to access the RxNorm data. In early
2008, the web services that access the RxNorm data
were enhanced and made available publicly. The cur-
rent API comprises functions for resolving drug
names and codes into RxNorm identifiers, for access-
ing the properties of drug concepts (including their
relations to other drug concepts), as well as various
housekeeping functions. The complete list of func-
tions of the API is displayed in Annex 1. In addition,
a description of the API in the Web Service Defini-
tion Language (WSDL) is available at
http://mor.nlm.nih.gov/download/RxNormDBService.wsdl.

Quality assurance in RxNav. RxNorm data have the
structure of a graph. As shown in Figure 1, RxNorm
relations are often purposely redundant. For example,
given an ingredient, to get the related clinical drug
names the following paths could be taken:

Path 1:

1. Get the clinical drug components of the in-
gredients using the ingredient_of relationship.

2. Get the clinical drug names of the clinical
drug components using the consists_of rela-
tionship.

Path 2:

1. Get the clinical drug forms of the ingre-
dients using the ingredient_of relationship.

2. Get the clinical drug names of the clinical
drug forms using the inverse_isa relationship.

In terms of quality assurance, one major concern is
that the traversal implemented in RxNav for linking
two kinds of drug entities (e.g., ingredient and clini-
cal drug) may not yield the same results as alternate
paths (e.g., paths 1 and 2 above).

In this study, we use functions from the RxNorm API
to assess the consistency of traversal of the RxNorm
graph when using several alternate paths.

Methods

In selecting alternate relationship paths to compare,
the paths actually implemented in the RxNav applica-
tion were first examined. For historical reasons, the
most direct path between two kinds of drug entities
was not always used. For example, as shown in
Figure 1, when starting with a brand name, it is poss-
ible to get the related branded drug names directly by
using the ingredient_of relationship. However, the
RxNav application actually gets the branded drug
forms from the brand name with the ingredient_of rela-
tionship and then uses those branded drug forms with
 AMIA 2008 Symposium Pr
the inverse_isa relationship to retrieve the branded
drug names.

For the study, four sets of paths were chosen, based
on the fact that the path used in the RxNav applica-
tion was not a direct path, but that a direct path did
exist. So both the indirect path used in the application
and the direct path not used were selected for com-
parison. In addition to comparing direct and indirect
paths, we also wanted to compare several indirect
paths. To this end, we added a second indirect path to
one of the sets. Table 2 below shows the paths which
were selected – the relations between the term types
are omitted.

Set Id Path taken
Set 1
direct

Brand name → branded drug name

Set 1
indirect

Brand name → branded drug form →
branded drug name

Set 2
direct

Branded drug form → clinical drug form

Set 2
indirect

Branded drug form → branded drug
name → clinical drug name → clinical
drug form

Set 3
direct

Ingredient → brand name

Set 3
indirect

Ingredient → clinical drug component
→ branded drug name → branded drug
form → brand name

Set 4
direct

Clinical drug form → ingredient

Set 4
indirect 1

Clinical drug form → clinical drug name
→ branded drug name → clinical drug
component → ingredient

Set 4
indirect 2

Clinical drug form → clinical drug name
→ clinical drug component → ingre-
dient

Table 2. Paths tested

To test the data, a Java program was created to use
the RxNorm API functions. The program takes as
input a file of RxNorm identifiers and reads com-
mand line parameters to determine which API func-
tions to call. The returns from the API calls are
printed to a file.

For the direct paths, the API function getRelated-
ByRelationship is used. For example, from the
brand name Zyrtec (RxCUI = 58930), this function
returns five branded drug names, including Zyrtec 10
MG Chewable Tablet (541030) when called with the
relationship ingredient_of as parameter.
 oceedings Page - 592

For the indirect paths, the API function getRela-
tedByType is used since this is the function called
by the RxNav application and reflects the indirect
path listed in Table 2. For example, from the brand
name Zyrtec, this function also returns five branded
drug names when called with the term type “SBD”
(for branded drug name) as parameter.

Also, getRelatedByRelationship was used in
the analysis phase to test segments of the indirect
path to determine the source of the differences be-
tween the direct and indirect paths.

The paths were tested using all RxNorm concepts of
the starting term type for the set. The March 2008
version of the RxNorm data set was used. This in-
cluded 3,460 ingredients, 9,716 brand names, 11,346
branded drug forms and 8,154 clinical drug forms.

Results

Table 3 shows the results of the paths tested in Table
2. The second column of the table indicates the num-
ber of concepts that were tested of the starting term
type. For example, in set 1, 9,716 brand name con-
cepts were tested. The third column indicates how
many of those start concepts led to 1 or more target
concepts from the path taken. The fourth column in-
dicates how many concepts were found at the final
term type in the path.

Set Id Start
concepts

Start #
found

target
concepts

Set 1 direct 9,716 9,696 14,499
Set 1 indirect 9,716 9,696 14,499
Set 2 direct 11,346 11,346 11,346
Set 2 indirect 11,346 11,312 11,312
Set 3 direct 3,460 1,710 16,508
Set 3 indirect 3,460 1,701 16,360
Set 4 direct 8,154 8,154 12,436
Set 4 indirect1 8,154 4,020 5,790
Set 4 indirect2 8,154 8,094 12,340

Table 3. Path Results

Discussion

Findings. In all cases, the direct path yielded at least
as many results as the indirect path and only in set 1
did the direct and indirect paths produce exactly the
same results.

The results of set 1 (retrieving branded drug names
starting with brand names) did reveal that 20 brand
names have no currently related branded drug names.
An example is the brand name Centrax. Upon further
investigation it was discovered that a branded drug
 AMIA 2008 Symposium Pr
name originally existed for Centrax, but was now
obsolete. The RxNorm data set contains the obsolete
record, but obsolete records are not used by the API
or in RxNav. Similarly, the other 19 brands names
also had obsolete branded drug names.

In set 2 (retrieving clinical drug forms starting with
branded drug forms) it was expected there would be
one target concept for each starting concept. While
this was true in the direct path, 34 target concepts
were missing in the indirect path. For example, the
branded drug form Ketorolac Injectable Solution
[Toradol IM] does not map to a clinical drug form in
the indirect path. Further analysis showed that these
branded drug forms had no current relationships to
any branded drugs. The reason for this is that the
branded drug names are obsolete, similar to those in
set 1.

In set 3 (retrieving brand names starting with ingre-
dients) the indirect path target concepts are not a sub-
set of the direct path target concepts. There are 26
indirect path brand name instances identified that do
not exist in the direct path. This would seem to indi-
cate missing direct relationships between the ingre-
dient and the brand name. Conversely, there are 174
instances of brand names in the direct path that are
missing from the indirect path. All of these appear to
be errors – for example, the ingredient Bisacodyl is
related to the brand name Colax through the
has_tradename relationship. However, the branded
drug name, branded drug component and branded
drug form related to Colax do not contain Bisacodyl
as an ingredient. The direct path is this set appears
not to be a better choice currently.

In set 4 (retrieving ingredients from clinical drug
forms) the indirect path 1 used in RxNav produces
many fewer target concepts than the direct path. This
is because the path goes through the brand drug
names even though both the start and end term types
are associated with clinical (generic) drug. Many
clinical drug forms do not have related brand names,
so going through the branded drug names is in error.
For example, hydrogen peroxide mouthwash has no
branded drug names, so the indirect path 1 returns no
ingredients.

Indirect path 2 uses only paths through clinical drug
data, and as expected the results are much better.
However, 60 clinical drug form concepts yielded no
ingredients in this path because these drug forms con-
tained no current relationship to a clinical drug name.
An example of this is the clinical drug form magne-
sium citrate oral tablet. Once again, obsolete forms
of clinical name drugs exist in the RxNorm data set
for this concept, but there are no current clinical
name drugs.
 oceedings Page - 593

Practical implications. The implications of these
quality assurance tests are two-fold. This experiment
made it clear that the indirect paths originally imple-
mented in RxNav are currently suboptimal and have
the potential to misrepresent the RxNorm dataset. As
a consequence, we decided to modify the implemen-
tation of RxNav in order to benefit from accurate
direct paths whenever possible. (We traced the origi-
nal design of RxNav and the use of indirect paths to
issues with early versions of RxNorm data that have
long been corrected.)

The discrepancies identified in the traversal of the
RxNorm graph between direct and indirect paths and
between alternative indirect paths may be indicative
of errors in the RxNorm dataset. These potential
problems have been reported to the curators of
RxNorm and several have been fixed in releases
since our testing with other changes scheduled for a
future release. The relatively small number of discre-
pancies identified in the systematic examination of
alternate paths in our study is a testimony to the high
quality and careful curation of the RxNorm database
overall. However, these potential errors also show
how difficult it is to ensure the quality of data in a
large, highly redundant and rapidly evolving database
such as RxNorm.

This investigation was also an opportunity to apply
the recently released RxNorm API in a relatively
intensive application. The web services implementa-
tion provided support for easy integration of the
RxNav functions in the program developed for
checking the consistency of the RxNorm graph. The
web services provided both convenience and speed.

Limitations. The study only evaluated a subset of all
the possible paths through the relationships in
RxNorm. In the future, we plan to pursue the syste-
matic investigation of the RxNorm dataset, using the
knowledge of the obsolete clinical and branded drugs
to filter out false positives and restricting the paths to
stay within the clinical or branded relations when
possible. In particular, we would like to use graph-
based systems (e.g., Semantic Web technologies such
as RDF, the Resource Description Framework) to
develop a thorough and routine analysis of the
 AMIA 2008 Symposium Pro
RxNorm graph, therefore contributing to the quality
assurance process of RxNorm.

Acknowledgements

This research was supported in part by the Intramural
Research Program of the National Institutes of Health
(NIH), National Library of Medicine (NLM).

References

1. Cimino JJ. Auditing the Unified Medical
Language System with semantic methods. J
Am Med Inform Assoc 1998;5(1):41-51

2. Halper M, Wang Y, Min H, Chen Y, Hripc-
sak G, Perl Y, et al. Analysis of error con-
centrations in SNOMED. AMIA Annu
Symp Proc 2007

3. Bangalore A, Thorn KE, Tilley C, Peters L.
The UMLS knowledge source server: an ob-
ject model for delivering UMLS data.
AMIA Annu Symp Proc 2003:51-5

4. Mirhaji P, Kunapareddy N, Michea Y, Sri-
nivasan A. A Web Services architecture for
UMLS Knowledge Sources. AMIA Annu
Symp Proc 2005:1055

5. Zeng K, Bodenreider O, Kilbourne J, Nelson
S. RxNav: a web service for standard drug
information. AMIA Annu Symp Proc
2006:1156

6. HL7 Common Terminology Services:
http://informatics.mayo.edu/LexGrid/downl
oads/CTS/specification/ctsspec/cts.htm

7. LexGrid Common Terminology Services:
http://informatics.mayo.edu/LexGrid/index.
php?page=ctsimpl

8. Anzbock R, Dustdar S. Modeling and im-
plementing medical Web services. Data &
Knowledge Engineering 2005;55(2):203-
236

9. Liu S, Ma W, Moore R, Ganesan V, Nelson
S. RxNorm: prescription for electronic drug
information exchange. IT Professional
2005;7(5):17-23

10. RxNorm:
http://www.nlm.nih.gov/research/umls/rxnor
m/

ceedings Page - 594

Branded drug formClinical drug form

Precise IngredientIngredient

Clinical drug
component

Brand name

Branded drug
component

Branded drug
name

Dose form

Clinical drug
name

tradename_of

tradename_of

tradename_of

has_tradename

has_tradename

has_tradename

isa inverse_isa

dose_form_of dose_form_of

dose_form_ofdose_form_of

has_dose_formhas_dose_form

has_dose_formhas_dose_form ingredient_of

ingredient_of

in
gr

ed
ie

nt
_o

f

has_ingredient

has_ingredient

ha
s_

in
gr

ed
ie

nt

constitutes

co
ns

tit
ut

es

consists_of

co
ns

is
ts

_o
f

in
gr

ed
ie

nt
_o

f

ha
s_

in
gr

ed
ie

nt

has_precise_ingredient

has_precise_ingre

precise_ingredient_of

form_of

has_form

isa inverse_isa

constitutes

consists_of

ingredient_of

has_ingredient

precise_ingredient_

has_tradename

tradename_of

Figure 1. Relations among RxNorm entities
Annex 1. List of functions of the RxNorm Web Services API

• findRxcuiByString(searchString)
Search for a name in the RXNORM data set and return
the RXCUIs of any concepts which have that name as
an RxNorm term or as a synonym of an RxNorm term.

• findRxcuiById(idType, id)
Search for an identifier from another vocabulary and
return the RXCUIs of any concepts which have an
RxNorm term as a synonym or have that identifier as
an attribute.

• getSpellingSuggestions(searchString)
Get spelling suggestions for a given term. The sugges-
tions are RxNorm terms contained in the current ver-
sion.

• getRxConceptProperties(rxcui)
Get the RxNorm Concept properties

• getRelatedByRelationship(rxcui, relationship-list)
Get the related RxNorm identifiers of an RxNorm
concept specified by a relational attribute list.

• getRelatedByType(rxcui, type-list)
Get the related RxNorm identifiers of an RxNorm
concept specified by one or more term types.

• getAllRelatedInfo(rxcui)
Get all the related RxNorm concepts for a given
RxNorm identifier.

• getDrugs(name)
Get the drug products associated with a specified
name. The name can be an ingredient, brand name,
clinical drug form, branded drug form, clinical drug
component, or branded drug component.

• getNDCs(rxcui)
Get the National Drug Codes (NDCs) for the RxNorm
concept.

• getRxNormVersion()
Get the version of the RxNorm data set.

• getIdTypes()
Get the valid identifier types of the RxNorm data set.
See findRxCuiById for use of these types.

• getRelaTypes()
Get the relationship names in the RxNorm data set.

• getTermTypes()
Get the valid term types in the RxNorm data set.
 AMIA 2008 Symposium Proceedings Page - 595

