Integrating an Italian consumer health terminology with the UMLS using Semantic Web Technologies

Elena Cardillo
cardilloe@mail.nih.gov

Supervised by: Olivier Bodenreider
Introduction

- Huge effort in integrating medical terminologies and classification systems by creating mappings between them

- Use of Semantic Web Technologies
 - To formalize existing medical terminologies
 - To develop new medical ontologies
 - To integrate them into large ontology repositories (e.g. BioPortal)

- More emphasis on the patient perspective
 - Personal Health Records accessible from the web
 - Active role played by consumers
 - Development of consumer-oriented vocabularies
Critical Issues

- Interoperability between different healthcare systems is still a significant problem.

- Medical linguistic gap still evident
 - Differences between laypersons and professionals
 - Epistaxis: Nosebleed
 - Dyspnea: Short of breath

- Need for integrating consumer-oriented and professional medical vocabularies for use in healthcare information systems such as PHRs.
Objectives

- To create an Integration Framework for the General Practice domain
 - Map language-dependent consumer-oriented vocabularies to language-independent professional medical terminologies

Why:
- To help bridge the linguistic gap between lay and professional resources
- To help consumers interpret clinical notes and test results and describe clinical history and complaints in their PHRs
- To facilitate querying and searching of healthcare information
- To improve consumer-oriented healthcare information systems

How:
- Using UMLS as a source of mappings between medical terminologies
- Using Semantic Web technologies for integration purposes
Materials

- Consumer health terminology
 - Italian Consumer Medical Vocabulary (ICMV) – v. 2009
 - 1659 Italian lay terms for symptoms, diseases and anatomical structures, 1355 mapped to ICPC2

- Professional terminologies
 - SNOMED CT – RDF v. July 2009 (NLM ongoing project)
 - MeSH – RDF v. 2009 (NLM ongoing project)
 - LOINC – v. 2.27 2009
 - ICD10 – OWL v. 2008 (FBK ongoing project)
 - ICPC2 – OWL v. 2008 (FBK ongoing project)

- UMLS Methathesaurus - v. 2009AB
 - UMLS partial RDF version (NLM ongoing project)
Overview of the Methods

- ICPC2 serves as a pivot between ICMV and other professional vocabularies integrated in the UMLS
- UMLS Metathesaurus provides mappings between ICPC2 and SNOMED CT, MeSH, LOINC and ICD10
Approach:
Step 1. Generating RDF N-triples

- Medical terms and their inter-relations are represented using RDF N-Triples
 - `<subject> <predicate> <object> .`

- SNOMED CT and MeSH already converted to RDF for other NLM projects
 - `<subject>` a SNOMED CT concept or a MeSH descriptor
 - `<predicate>` concept properties
 - `<object>` a literal corresponding to a property or a node representing another concept

- OWL resources, ICPC2 and ICD10 serialized in RDF are directly compatible with other RDF resources
 - `<subject>` a class of the ontology (ICPC2 or ICD10 concept)
 - blank nodes for the representation of restrictions of the classes
 - `<predicate>` concept properties
 - `<object>` a literal corresponding to a property or a node representing another concept

- Java program to create RDF triples for LOINC from data in the UMLS Metathesaurus
 - Extraction of labels, type, and identifier for each LOINC “concept” and “part” from MRCONSO table
 - Extraction of relations among entities from MRREL table
Approach:
Step 2. Enriching sources with UMLS information

Objective
Enriching each terminology with UMLS attributes to facilitate term comparisons among vocabularies

UMLS Attributes
- Concept unique identifier (CUI)
- Source abbreviation (SAB)
- Lexical unique identifier (LUI)
- Term type (TTY)

Java Program to extract this information from the MRCONSO table and to create N-triples

LUI 1: L0215040 Cold Temperature CSP
LUI 2: L0009264 Cold MSH, MTH

CUI 1: C0009264 Cold Temperature

LUI 1: L0009264 Cold MTH, COSTAR
LUI II: L0009443 Common Cold MSH

CUI II: C0009443 Common Cold

LUI 1: L0009264 Cold MTH, COSTAR
LUI II: L0009443 Common Cold MSH

CUI III: C0024171 Chronic Obstructive Airway Disease

LUI I: L0498186 Chronic Obstructive Airway Disease MSH
LUI II: L0009264 COLD MSH, SNMI

...
Approach:
Step 3. Loading and Querying

- Loading N-triples into the Virtuoso RDF triple store
 - 17 graphs (6 Original resources, 6 UMLS Enrichment resources, and 5 Transitive Closure resources)

- 3 types of queries:
 1. Find concepts corresponding to ICPC2 concepts, using CUIs
 2. Find synonyms/new names corresponding to ICPC2 concepts, using CUIs, LUIs and TTYs
 3. Find common Parents relations among the terminologies, using CUIs

- SPARQL
 - Query language for RDF resources
 - Equivalent to SQL for relational databases

- Java program to automate the submission of batch queries to Virtuoso and collect the results
Approach:
Step 4. Quality assurance of the mappings

- Evaluation of the quality of the mappings between ICMV and ICPC2 and the suitability of ICPC2 for representing ICMV

- Direct mapping of some “lay” ICMV terms to the Italian concepts in UMLS Methathesaurus
 - Using exact match (UMLSKS application programming interface)
 - Mapping found (ICMV term → UMLS CUI + Preferred Term + Source + Code)
 - No mapping found

- Compare direct mappings through UMLS to the mapping through ICPC2 created by experts
Results: Triples and Performance

- **Numbers of Triples loaded into Virtuoso**
 - 66,769,781 unique triples among the 17 graphs, in particular:
 - 97,457 from ICD10
 - 18,650 from ICPC2
 - 1.9M from LOINC
 - 1.8M from SNOMED CT
 - 16.6M from MeSH
 - ~ 50M from UMLS

- **Performance**
 - Few seconds for loading each graph into Virtuoso, 5 minutes only for the UMLS Enrichment graph (larger UMLS graph already loaded)
 - Short execution time for batch queries (3-5 minutes for a query on each concept in ICPC2)
 - Poor performance for queries related to Hierarchical mappings (hours)
Results: Find concepts corresponding to ICPC2 concepts (CUI-based)

ICPC2: A73 MALARIA

SNOMED CT: 61462000 Malaria (disorder) [Parent]
SNOMED CT: 186797008 Unspecified malaria (disorder) [Inactive Concept]
SNOMED CT: 248437004 Malarial fever (finding) [Intermitted fever]
UMLS CUI: C0024530

ICPC2: F93 GLAUCOMA

ICD10: H40 Glaucoma
ICD10: H.40.9 Glaucoma, unspecified [Child]
ICD10: H40-H42.9 Glaucoma [Parent class]
UMLS CUI: C0017601

Pairs of SNOMED CT concepts are collapsed in the same UMLS CUI. E.g. Malaria
Results: Find concepts corresponding to the ICPC2 concepts (CUI-based)

Among the 83 mapped to only one terminology:
- 74 map only SNOMED
- 4 map only to MeSH
- 5 map only to ICD10

Examples
- Map to 4 terminologies: A03 - Fever, F93 - Glaucoma
- Map only to SNOMEDCT: A18 - Concern about appearance
- Map only to MeSH: N19 - Speech disorder
- Map only to ICD10: H77 – Sprain/strain of ankle
Results: Find synonyms/new names corresponding to ICPC2 concepts

Synonyms:
A total of 949 additional synonyms for 422 ICPC2 concepts
E.g. 14 synonyms for the ICPC2 concept “U04” - Incontinence Urine

<table>
<thead>
<tr>
<th>ICPC2</th>
<th>LU1s</th>
<th>New Synonyms</th>
<th>SNOMED CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>U04</td>
<td>L0021170</td>
<td>Urinary Incontinence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0042024</td>
<td>Absence of bladder continence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0005685</td>
<td>Involuntary urination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0308837</td>
<td>Unable to control bladder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0527266</td>
<td>Weak bladder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0527384</td>
<td>Unable to hold urine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0583725</td>
<td>Bladder incontinence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0005692</td>
<td>Unable to prevent bladder emptying</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0527301</td>
<td>Unable to hold fluids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0586619</td>
<td>UI - Urinary incontinence</td>
<td>165232002</td>
</tr>
<tr>
<td></td>
<td>L0574730</td>
<td>Bladder: incontinent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0042024</td>
<td>Incontinence, urinary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0527264</td>
<td>Lack of bladder control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0527265</td>
<td>Loss of bladder control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L0590897</td>
<td>Leaking of urine</td>
<td></td>
</tr>
</tbody>
</table>
Results: Find common Parent relations among terminologies

- 220 ICPC2 concepts share hierarchical relations with other terminologies
 - 193 with SNOMED CT
 - 27 with MeSH
 - None with ICD10 and LOINC
 - 84 unique parent CUIs shared between ICPC2 and some of the other terminologies
 - 4/84 common to SNOMED CT and MeSH

- Mapping found only for "diseases"

- Mappings with shared parents
 - 27/201 14% of ICPC2 concepts mapped to MeSH
 - 193/321 60% of ICPC2 concepts mapped to SNOMED CT
Results: Quality assurance of the mappings

- Mapping ICMV terms to UMLS Italian concepts (exact match)
 - 655/1659 unique ICMV terms
 - 1232/1659 total mappings to the UMLS Italian concepts
 - Mapped to 690 unique UMLS CUIs

- Ambiguity issues
 - Concept name treated as acronym
 - E.g. the term «ANCA» (Hip) mapped also to:
 - Anticorpi antineutrofili anticitoplasma (Antineutrophil Cytoplasmic Antibodies)
Conclusions

- ICPC2 integrated with SNOMEDCT, ICD10, MeSH, LOINC using RDF and SPARQL queries
 - 50% of ICPC2 concepts mapped to at least one other terminology
 - Many multiple mappings, that is “ambiguity”
 - Inconsistencies found in terms of classification of symptoms and diseases among the terminologies
 - E.g. “Warts” classified as symptom in ICPC2 and as disease or diagnosis in the other terminologies
- New mappings between ICMV and professional terminologies through our integration framework
- Future work
 - Classification of the ICMV terms according to the most representative professional terminology
 - Evaluation of the feasibility of this framework under the PHR at development at the FBK Research Institute in Trento (Italy)
Project outcomes

- One paper submitted to eHealth2010

- One in preparation for SMBM2010
Acknowledgment

Thank you very much to NLM and LHC director and staff for this visiting period and in particular to:

- Olivier Bodenreider
- May Cheh
- Celina Wood
- Genaro Hernandez
- John Nguyen
- Mohammed Cylegar
- All my colleagues and office neighbors
Thanks for you for attention