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Highlights 

• We design a complete machine learning framework for drug-drug interaction extraction 

using support vector machines and a shallow linguistic features space. 

• We report that drug-drug interactions can be extracted from product labels published on 

DailyMed with high statistical accuracy scores. 

• Our feature space and model generalize well for different types of annotation schemas 

and datasets (DailyMed, MEDLINE, DrugBank). 

• Our annotated corpus is available at http://lhce-brat.nlm.nih.gov/NLMDDICorpus.htm. 

  



Abstract  

Background: Information about drug-drug interactions (DDIs) is found in the medical literature 

and in drug package inserts published on DailyMed in addition to commercial drug databases. 

Objectives: To develop a machine learning framework for the extraction of DDIs from structured 

product labels (SPLs). 

Methods: We develop a supervised machine learning framework (support vector machine 

classifier with shallow linguistic features) that extracts sentences containing a drug interaction 

relation, classifies interaction types and identifies the object and precipitant drug. We evaluate 

the framework performance against three document sets: the annotated corpus of 180 

cardiovascular drug SPLs we created for framework development, the corpus of the SemEval 

DDIExtraction 2013 challenge, and a reference list of DDIs. 

Results: The performance on our SPL corpus (F-score = 0.84) is competitive with the best 

performance in the SemEval DDIExtraction 2013 challenge. We demonstrate the portability of 

our approach to another corpus (SemEval DDI corpus). 

Conclusions: Our work is the first attempt to extract drug-drug interactions from structured 

product labels. Our annotated corpus of 180 SPLs is available for download at http://lhce-

brat.nlm.nih.gov/NLMDDICorpus.htm. Future work includes resolution of drugs referred to 

anaphorically and through drug classes. 

  



1. Introduction 

A drug-drug interaction (DDI) is defined as a modification in the effect of a drug when 

administered with another drug. It can be an increase or a decrease in the action of either drug, or 

an adverse effect not normally associated with the drugs when administered on their own [1, 2]. 

Exposure to a DDI occurs when a patient is prescribed or administered two or more drugs that 

are known to interact [3]. 

The incidence of DDIs in patients is estimated to range from 4.7% to 8.8% [4]. While exposure 

to a DDI does not always result in an adverse drug event [5], such events are a significant source 

of preventable drug-related harm. An analysis of sixteen cohort and case-control studies revealed 

an elevated risk of hospitalization in patients who were exposed to DDIs [6]. Clinically 

important events attributable to DDI exposure are estimated to occur in 5.3% to 14.3% of 

inpatients, and are responsible for 0.02% to 0.17% of the nearly 130 million emergency 

department visits that occur each year in the United States. 

The effective use of clinical decision support in electronic health records has been shown to 

reduce medication errors, including adverse events related to DDIs [7]. Availability of 

comprehensive, up-to-date, and machine-readable knowledge about DDI is a prerequisite to 

more widespread implementation of clinical decision support systems. However, many 

knowledge bases fail to include important drug interactions and contain outdated, irrelevant, or 

even incorrect information [4]. The medical literature and drug package inserts (drug labels) are 

two major and commonly used sources of DDI information. In these sources, however, DDIs are 

expressed in natural language and do not have a predefined format [8]. In other words, DDI 

knowledge from these sources is not machine-readable. Examples of DDIs expressed in textual 

form include “Do not coadminister aliskiren with Diovan in patients with diabetes.” and “Limit 



the dose of simvastatin in patients on amlodipine to 20 mg daily.” The lack of publicly available 

sources of machine-readable DDI information motivates our work on extracting this information 

from the Food and Drug Administration (FDA) structured product labels provided by DailyMed. 

This variability observed in the expression of DDIs suggests that machine learning techniques 

will likely be more successful than symbolic methods (e.g. regular expressions) for extracting 

DDIs. Supervised machine learning techniques require an annotated corpus for their 

development and evaluation. Therefore, the first step in our work is to generate a corpus of 

DailyMed structured product labels annotated with DDI information. 

The main objective of this work is to develop a supervised machine learning framework for the 

extraction of DDIs from DailyMed structured product labels. A secondary objective is to share 

our annotated corpus with the community in order to promote DDI extraction research. This 

work, done in collaboration with colleagues at the FDA, is the first attempt to extract DDI 

information from DailyMed structured product labels. Our current pilot focuses on 

cardiovascular drugs. 

2. Background 

This section introduces our source of DDI information, the DailyMed structured product labels, 

discusses related work and highlights the specific contribution of our work. It also presents two 

additional resources used in our evaluation: the SemEval DDI corpus and the ONC list of DDIs 

(high-priority DDIs curated by an expert panel [18] for the Office of the National Coordinator 

for Health Information Technology as part of the Meaningful Use incentive program). 



2.1. DailyMed structured product labels  

We use the DailyMed structured product labels1 as our source of the drug-drug interactions. This 

is the most comprehensive, current and authoritative source of drug information available to the 

public in the form of drug package inserts (structured product labels). DailyMed is developed 

collaboratively by the National Library of Medicine and the FDA (Food and Drug 

Administration) and provides high quality information about some 67,876 marketed drugs. The 

Structured Product Labeling (SPL) document markup standard defines the structure of the human 

readable documents that contain the information provided in drug package inserts. A structured 

product label mostly contains textual information and is organized in several sections. The 

sections (described with their names and corresponding LOINC2 codes) where DDI information 

may be present include: Boxed Warning section (34066-1), Contraindications section (34070-3), 

Dosage and Administration (34068-7), Drug and/or laboratory test interaction section (34074-5), 

Drug Interactions section (34073-7), Precautions section (42232-9), Warnings and Precautions 

section (43685-7), and Warnings section (34071-1). The DailyMed structured product labels 

used in this study were downloaded from the NLM DailyMed1 website on August 10 2013.  

2.2. Related Work  

We review approaches to extracting information from the DailyMed structured product labels 

(SPLs), as well as approaches to extracting DDIs from textual sources, before highlighting the 

specific contribution of our work. 

1 DailyMed Structured Product Labels - http://dailymed.nlm.nih.gov/dailymed/index.cfm - accessed 05/05/2014 

2 LOINC codes - http://loinc.org/ - accessed 10/30/2014 

                                                 

http://loinc.org/


2.1.1. Information Extraction from DailyMed Structured Product Labels 

The SPLs have been used by several research groups to extract various kinds of information, 

including drug indications and adverse drug events. 

Indications. Fung et al. [8] extracted focus drug indications from the SPLs. Their framework 

parses the indication section of the labels and analyses the corresponding text segments with the 

MetaMap program, restricting the extraction to disorder and finding semantic types and ignoring 

high-level concepts. The overall recall, precision, and F score were 0.95, 0.77, and 0.85, 

respectively, demonstrating that natural language processing (NLP) approaches are effective for 

extracting drug indications from SPLs. Li et al. [9] describe a system, called AutoMExtractor, 

that extracts medical conditions from SPLs. Instead of MetaMap, they employ conditional 

random fields, a statistical machine learning approach, for the extraction. The system was trained 

on a corpus containing 6611 manually annotated medical conditions. The authors report 0.92 

precision, 0.73 recall, and 0.82 F-score, similar to the performance reported by Fung et al. [8]. 

Adverse drug events. Duke et al. [10] developed a tool, called SPLICER, to extract and codify 

adverse drug reaction information from SPLs. Tagging of adverse drug events (ADEs) is 

accomplished by a set of specific rules tailored to the different text sections and formatted 

structures (e.g., tables, lists) of the SPL. SPLICER demonstrated high accuracy in ADE 

extraction. High statistical scores (recall, precision and F-measure of 0.96, 0.97 and 0.97 

respectively) show that rules-based systems perform well for specific information extraction 

goals. Kuhn et al. developed SIDER3, a publicly available ADE knowledge base, which was 

obtained by extracting ADE information from SPLs [11]. Specific sections of the SPLs were 

3 SIDER - http://sideeffects.embl.de/ - accessed 10/20/2014 

                                                 

http://sideeffects.embl.de/


analyzed by text mining tools using a dictionary of side effects derived from the UMLS 

Metathesaurus. SIDER contains 62,269 drug–adverse event pairs and covers a total of 888 

unique drugs and 1450 distinct side effects. The performance of the extraction tools is not 

reported. Smith et al. [12] reflect on the challenges in identifying pharmacovigilance information 

from multiple sources, including the SPLs. They processed SPLs using the KnowledgeMap 

Concept Identifier [13], an NLP tool developed at Vanderbilt University. The authors highlight 

complex logical and temporal sentence structures in SPLs, which standard NLP approaches 

currently fail to handle properly.  

2.2.1. Extraction of drug-drug interactions from biomedical text 

As illustrated by the success of recent challenges (SemEval 2011, SemEval 2013), drug-drug 

interaction extraction from textual sources is an active field of research in medical informatics. 

The statistical scores reported in these challenges are much lower than those reported for drug 

indication extraction, underscoring the inherent difficulty to accurately classify relations between 

drugs. Most participants in the SemEval challenges have used machine learning approaches to 

extracting DDI information, particularly support vector machine classifiers. (An overview of the 

existing methods for DDI extraction can be found in [14] [15].) The sources of DDI information 

used in the SemEval challenges have included the biomedical literature (MEDLINE®) and 

DrugBank [16]. Surprisingly, the DailyMed structured product labels, used for extracting drug 

indications and adverse drug events, have not yet been used as a source for the extraction of DDI 

information. 

2.2.2. Specific contribution 

As we have seen, the SPLs have been used as a source for other elements of drug information 

(indications, ADEs), but not DDI. Similarly, DDI extraction has been applied to different sources 



of biomedical text, but not the SPLs. The main contribution of this work is to bridge this gap, 

i.e., to propose an approach to extracting DDI information from the DailyMed structured product 

labels. An additional contribution is the refinement of DDI extraction through role classification 

within a drug interaction (i.e. the identification of object and precipitant drugs). Finally, we share 

with the community a manually annotated DDI corpus of 180 SPLs developed in the course of 

this work. 

2.3. Resources used for evaluation purposes 

We use several resources for the evaluation of our DDI extraction framework. In addition to our 

own corpus, we use two external references, namely the corpora used in the SemEval challenges 

and a list of high-priority DDIs identified for clinical decision support purposes. 

2.3.1. SemEval Corpus for Drug and DDI Extraction 

The annotated corpus developed as the gold standard for the SemEval 2011 and 2013 challenges 

(drug entity recognition and drug-drug interaction classification) [17] has been published 

recently. This corpus contains 792 texts selected from the DrugBank database and 233 

MEDLINE abstracts. It was annotated with a total of 18,502 instances of pharmacologic 

substances and 5028 DDIs, including both pharmacokinetic (PK) and pharmacodynamic (PD) 

interactions. The corpus enumerates all drug pairs in a sentence. The following DDI information 

is recorded wherever applicable: “mechanism” (how the interaction occurs), “effect” (the 

consequence of the interaction), “advice” (recommendation or advice) and “int” (when no further 

information is mentioned). The specific spans that identify the textual evidence for an interaction 

are not mentioned in the corpus. We use this resource in our evaluation in order to assess 

whether our approach to extracting DDIs from SPLs can be applied to different corpora. 



2.3.2. ONC High-Priority DDIs 

Given the multitude of overlapping drug interaction resources, a set of high-severity, clinically 

significant drug-drug interaction resource was needed to serve as a reference for interactions that 

every clinical decision system should contain. An expert panel under the supervision of Bates et 

al. was convened to curate existing DDI lists and identify high-priority DDIs for the Office of the 

National Coordinator for Health Information Technology (ONC) as part of the Meaningful Use 

incentive program [18]. Candidate DDIs were assessed by the panel based on the consequence of 

the interaction, severity levels assigned to them across various medication knowledge bases, 

availability of therapeutic alternatives, monitoring/management options, predisposing factors, 

and the probability of the interaction based on the strength of evidence available in the literature. 

The list contains 360 interacting pairs of individual drugs corresponding to 88 distinct drugs. We 

use this resource in our evaluation in order to assess the degree to which DDIs from these lists 

can be extracted from SPLs. 

3. Materials 

Our corpus consists of 180 cardiovascular DailyMed structured product labels independently 

annotated and reviewed by four experts. We present the annotated corpus we created to support 

our supervised machine learning approach, from the perspective of the annotation schema, the 

annotation process, its characteristics and inter-annotator agreement. 

3.1. NLM DDI Annotation Schema  

DDIs are analyzed at the sentence level without performing anaphora resolution. In other words, 

both drug entities involved must be present in the sentence, not referred to through an anaphor. 



Drug entities. We annotate Pharmacologic substances, including drugs, drug classes and other 

substances (e.g. food). Unlike SemEval, we do not distinguish between generic names and brand 

names (they are both annotated as Drug), because the distinction is generally not significant for 

DDIs. We annotate both standard drug classes (i.e., found in standard drug classification 

systems, e.g., anti-hypertensives) and non-standard drug classes (e.g., drugs that may be 

indicated for the treatment of the cirrhosis of the liver). Substances refer to any material entities 

that are not drugs or drug classes. These include foods, nutritional supplements and other things 

that can be found in the environment (e.g. grapefruit juice, alcohol etc.). 

DDI roles. For the roles of drugs in the interaction, we reuse the schema from [19] (i.e., object 

and precipitant for the role of interacting drugs or substances). The object of interaction is a drug, 

drug class, or substance whose effect is altered by the precipitating entity. The precipitant drug, 

drug class, or substance is the entity that alters the pharmacologic and/or other action of the 

object entity. In our study, we derived a new schema to represent DDI knowledge. The most 

general mention of a DDI is the caution interaction. This is roughly equivalent to “advice” and 

“int” in the SemEval dataset. (We decided not to distinguish these, as they both imply some 

degree of caution without mentioning specifics.) We categorize interactions into increase and 

decrease interactions, according to the polarity of the effect of the precipitant on the object drug. 

This distinction is critical for clinical decision support, because an action may be required to 

maintain the therapeutic effect or minimize the toxicity of the object drug. Increase/decrease 

interactions are generally due to some pharmacokinetic mechanism, so the closest match with the 

SemEval schema would be “mechanism”, which encompasses both types of interactions. We use 

specific interaction to capture any specific reaction resulting from a DDI. This is similar to 

“effect” in the SemEval schema. 



3.2. Annotation Process 

Two expert annotators (a medical librarian, SES, and a medical doctor, LR, both trained in 

medical informatics) carried out the annotation task. The Brat rapid annotation tool [20] was 

used to support the annotation process. The two experts independently annotated all the 

sentences extracted from the relevant sections of the 180 SPLs. Two experts (KWF and DDF) 

with both medical and informatics expertise then reviewed the annotations from the two 

annotators and reconciled them as necessary.  

3.3. Corpus characteristics 

The characteristics of our DDI corpus are listed in Table 4. For the 180 SPLs, a total of 8444 

drug entities and 5059 interactions were annotated. With 54.2%, individual drugs have the 

highest frequency of occurrence in the corpus. Of note, drug classes are also encountered very 

frequently (33.3%). The most frequent interactions are specific interactions (52.2%), followed by 

caution interactions (25.7%).  

Our corpus is available in a format similar to the SemEval corpus. Our format follows the 

standoff annotation principle in which the original sentence text is preserved and all entities are 

stored as offsets. Our corpus also contains negative examples, corresponding to sentences 

containing two drug entities but no DDI annotation. Our annotated corpus can be downloaded at 

http://lhce-brat.nlm.nih.gov/NLMDDICorpus.htm. 

3.4. Inter-Annotator Agreement  

In order to assess the quality of our gold standard, we computed an inter-annotator agreement 

score for each type of drug entity and DDI role. Our inter-annotator agreement score is measured 

by the F-measure, when considering the annotations of the first annotator as the reference. 

Detailed inter-annotator agreement scores are listed in Table 1. Overall, the scores range between 



.72 and .90, reflecting good agreement between the two annotators, with the exception of the 

exact span of text used as evidence, for which the agreement is lower (.56), as can be expected 

for something that specific. 

Table 1. Characteristics of our DDI corpus and Inter-annotator agreement scores. 

 Entities Total number % Inter-Annotator 

Agreement 

Drug entities Drug 4584 (592 distinct) 54.2% 0.81 

Drug Class 2816 (670 distinct) 33.3% 0.84 

Substance 221 (33 distinct)  2.7% 0.82 

Span 823 (290 distinct) 9.8% 0.56 

Total  8444 100%  

DDI roles Specific Interaction 2595 (560 distinct 

triggers) 

52.2% 0.79 

Caution Interaction 1308 (204 distinct 

triggers) 

25.7% 0.72 

Increase Interaction 894 (289 distinct triggers) 17 % 0.84 

Decrease Interaction 262 (128 distinct triggers) 5% 0.9 

Total 5059 100%  

 

4. Methods and Results 

In this section, we present the details of our machine learning approach, as well as our evaluation 

strategy (against our own corpus, the SemEval corpus, and the ONC high-priority list of DDIs).  



4.1. Machine Learning Approach for DDI Extraction  

DDI extraction can be thought of as relation classification (i.e. the identification of the type of 

relation between two entities in text). As mentioned earlier, DDIs can be expressed in a variety 

of ways, making machine learning techniques the method of choice for the automatic extraction 

of DDIs. Our DDI extraction classifiers perform the following steps: (i) recognize if two drugs 

within a sentence are in a DDI relation or not; (ii) recognize the specific type of the DDI relation 

and (iii) recognize the direction of the DDI relation (i.e., which drug is the object and which is 

the precipitant). Using LIBSVM [21], an open-source Java implementation of support vector 

machines and inspired by the jSRE system [22], we trained a classifier for each subtask. Every 

classifier was trained with shallow features, such as stems, n-grams of stems, part-of-speech 

(POS) tags, n-grams of POS tags and specific orthographic information about tokens. The feature 

space is described in more details below. An overview of our three-step classifier is illustrated in 

Figure 1.  

  



Figure 1. Multi-step Classification Framework 

 

4.1.1. Preprocessing 

In the preprocessing step, we transform the original sentences containing more than 2 drug 

entities by creating one sentence for each pair of drug entities, allowing the classifier to focus on 

one pair per sentence. Consider the sentence “Warfarin is contraindicated with NSAIDs and 

hypertensives.” In this case, the interaction (or its absence) between two drug entities has to be 

classified for three pairs: (Warfarin, NSAIDs), (Warfarin, hypertensives) and (NSAIDs, 

hypertensives). At the same time, we also abstract away from the specific names of drug entities, 

replacing them by the label DRUG (for the two drug entities in a pair of interest) and OTHER 

(for other drug entities). In practice, for the pair (Warfarin, hypertensives), we create the 

following instance of the original sentence “DRUG is contraindicated with OTHER and 

DRUG.”. One additional sentence is created for each of the other pairs. 



4.1.2. Multi-Step Classification 

The classification process is composed of three sub-classifiers, each one providing the input for 

the next. The first classifier performs Pair classification (1). It takes pre-processed sentences for 

each candidate pair as input and labels each pair as interacting or not interacting. The second 

classifier performs Type Classification (2). It takes each interacting pair as input and assigns it a 

specific interaction type. The final classifier performs Role Classification (3). It classifies the 

drug entities within a pair and labels their roles (object, precipitant). Role labelling is especially 

important for the increase and decrease interactions. All classifiers use the linear kernel setting 

of the LIBSVM library. Grid search with a 10-fold cross-validation is used for estimating the 

best cost parameter for our linear kernel.  

4.1.3. Features Spaces for the Multi-Step Classifier 

We distinguish between global and local context features. The global context feature space uses 

information from the whole sentence, while the local context features represent information from 

the neighborhood of the entities. 

Global context feature space. The global context feature space divides the sentence into three 

fragments relative to the position of the two drug entities. It leverages the observation that a 

relation is often expressed using the words before and between the entities (“fore-between”), 

only between them (“between”), or between and after them (“between-after”). Features extracted 

from each sub-space are the stems of words, n-grams of the stems of words, part-of-speech 

(POS) tags of words and n-grams of POS tags of words. We introduce sparse stems, which is a 

bigram of stems, meaning that we connect the token at position i with the token at position i+2. 

An illustration of the global context feature space is in Figure 2. A sparse binary vector is used to 

store each feature space. If a feature occurs, it is represented in this vector as the value 1 at a 



given position in the feature space. We also use subtrees of the parse tree of the sentence (i.e., all 

nodes of the parse tree along with all their descendants) that correspond to a given region (fore-

between, between, between-after). In order to use them with a linear kernel, we transform these 

subtrees into sequences of nodes using the pre-order traversal. Since only the structure of the tree 

is important here, terminal nodes (stems) are removed. The list of global context features for the 

example sentence (“between” space) is shown in Table 2. We normalize all feature spaces by 

dividing each value by the Euclidean norm of the vector. The implementation of our feature 

space model was inspired by [22], where more detail is provided.  

Figure 2. Global Context Feature Spaces 

 

  



Table 2. Global Context Features for the example sentence (“between” space) 

Feature type Features 

Unigram Stems: may, decrease, the, effect, of 

POS tags: MD, VB, DT, NNS, IN 

Bigram Stems: may_decrease, decrease_the, the_effect, effect_of 

POS tags: MD_VB, VB_DT, DT_NNS, NNS_IN 

Trigram Stems: may_decrease_the, the_effect_of 

POS: MD_VB_DT, VB_DT_NNS, DT_NNS_IN 

Subtrees Between subspace: “may decrease the effects of”. 

Parse tree:  

(ROOT 
  (SINV 
    (VP (MD) 
      (VP (VB))) 
    (NP 
      (NP (DT) (NNS)) 
      (PP (IN))))) 
Features examples: 

DT_NNS, PP_IN, NP_NP_DT_NNS_PP_IN, VP_MD_VB, NP_DT 

_NNS. 

Sparse bigrams of stems may_the, decrease_effect, the_of 

 

Local context features space. The local context features represent information from the 

neighborhood of the drug entities. These features describe the context of the drug entities within 

a window of several tokens on the left and right side of the entity (Figure 3). We empirically 

determined the optimal window size as described in Section 4.2.1.1. For each token, the original 

token, its stem, POS tag and orthographic class are extracted and included in the feature space. 

The orthographic class feature can cover a wide range of orthographic categories, such as 



whether the token begins with uppercase or lowercase, is capitalized, has punctuation, or is a 

numeric value.  

The original token, its stem and POS tag together with the corresponding role label are first 

added, along with position information (relative to that of the drug entity). The orthographic 

categories of entities relative to a given position are also added (e.g. is it a punctuation mark, a 

word, a number, lowercase or uppercase?). The UMLS semantic types for the entities are also 

included in the feature space. The local context space is generated for each of the two drug 

entities in a candidate pair. 

Figure 3. Local context of an entity 

 

Combined feature space. The global feature and the individual local context feature spaces for 

each of the two drugs are combined. This combined feature vector is then used by the linear 

kernel. The final feature vector is depicted in Figure 4.  

Figure 4. Feature vector composition 

 

4.2.Performance of the Machine Learning Framework 

In order to assess the performance of our machine learning framework for extracting DDIs, we 

perform three experiments. First, we evaluate the performance on our corpus for the 3 main 



tasks: pair categorization, type categorization and role categorization. Then we apply our DDI 

extraction framework to the SemEval DDI corpus, in order to assess the framework portability. 

Finally, we assess the ability of our framework to extract DDIs for drugs other than the 

cardiovascular drugs in our annotated corpus. To this end, we attempt to identify in structured 

product labels the DDIs from the ONC high-priority list. 

4.2.1. Evaluation on the NLM CD (Cardiovascular) Corpus 

We used LIBSVM with a linear kernel to perform all classification tasks. The DailyMed dataset 

was divided into 70% training and 30% test set, using statistical sampling for each extraction 

task. A 10-fold cross validation on the training subset was performed in order to compute the 

cost parameter C, part of the linear kernel. The cost parameter value that yielded the highest 

accuracy was 2. This parameter is used in all the experiments below. Results for each sub-task 

are shown in separate sections. 

4.2.1.1. Pair Classification 

Feature Space Parameter Selection. In order to find the best configuration of our feature space, 

we designed a set of experiments to study the contribution of the n-gram and window sizes of 

our feature spaces. The best performance (precision = 0.818; recall = 0.869; F-score = 0.842) 

was obtained with an n-gram size of 3 for the global context features, and with a window-size of 

3 for the local context features. The results of the calibration experiments are summarized in 

Appendix 1. Unless mentioned otherwise, these parameters are used in the following 

experiments. 

Contribution of Individual Feature Spaces. The best performance was obtained with the 

combined feature space, integrating both the global and local features. In particular, the 

combined feature space significantly improves precision. In terms of F-measure, the combined 



feature space outperforms the global features spaces by 3% and the local feature space by 6%. 

The contribution of individual feature spaces is summarized in Appendix 2. 

Contribution of global context feature categories. The combination of global features resulting 

in the best performance includes n-grams of stems, n-grams of POS tags and sparse stems. The 

contribution of the various combinations studied is presented in Appendix 3. 

4.2.1.2.Type Classification 

The overall classification accuracy was 88.068% (716/813), highest for specific and caution 

interactions (> .90) and lowest for decrease interactions (.71). The details of the performance for 

each DDI type are summarized in Table 3. 

Table 3. Results for type classification 

Type of 

interaction 

Total Precision Recall  F-measure 

Specific 813 0.893 0.926 0.909 

Caution 813 0.918 0.888 0.903 

Increase 813 0.843 0.897 0.869 

Decrease 813 0.833 0.625 0.714 

 

The overall effect of combining the two feature spaces (global and local context) seems 

beneficial for type classification (Appendix 4). The recall significantly improves for decrease 

interaction, while there is small decline in precision for specific interaction and recall for caution 

interaction. 



4.2.1.3 Role Classification 

The overall classification accuracy was 100% for role classification, i.e. for determining which 

of the two drug entities is the object vs. precipitant drug. The local context kernel does not seem 

to have any effect on this classification task in our dataset. Our results are summarized in 

Appendix 5. 

4.2.2.  Evaluation on the SemEval Corpus 

We evaluate our machine learning approach on the SemEval Drug interaction Task 9 (2013) 

corpus in order to see the robustness of our feature space when applied to text other than 

structured product labels. The SemEval corpus is composed of two types of texts, from 

DrugBank and MEDLINE, which we treat as a combined corpus. The classifier was retrained on 

this combined corpus. As with our own corpus, a 10-fold cross-validation was performed for cost 

parameter estimation. The best cross-validation accuracy, 91.59%, was obtained for C value of 

3.. Our performance is reported in Table 4 together with highest scores obtained in the 

competition. Overall, our framework systematically outperforms the best method in the SemEval 

competition, demonstrating that our method is able to extract DDI relations not only from 

DailyMed, but also from different types of text (MEDLINE, DrugBank). 

Table 4. Results for the SemEval corpus 

Medline + DrugBank  
 
Accuracy = 
77.41585233441911% 
(713/921) (classification) 
Mean squared error = 
0.4223669923995657 
(regression) 
Squared correlation 
coefficient = 
0.5642510733129408 
(regression) 

Type Tp Fp fn Total Precision Recall F-score Best F-

scores 

effect 175 49 43 921 0.781 0.803 0.792 0.662 

mechanism 229 41 58 921 0.848 0.798 0.822 0.679 

advice 268 113 54 921 0.703 0.832 0.762 0.692 

int 41 5 53 921 0.891 0.436 0.586 0.547 

 



4.2.3. Finding evidence for the ONC High-Priority DDIs in DailyMed Structured Product 

Labels 

The ONC high-priority drug list contains 360 interacting pairs, involving 88 distinct ingredients 

from a variety of pharmacologic classes [18]. 84 of these drugs are covered by DailyMed. We 

hypothesize that these DDIs should be described in the DailyMed Structured Product Labels, and 

we use this list to evaluate the capacity of our tool to find evidence of drug-drug interactions in 

the DailyMed labels. Our goal with this experiment is to assess the performance of our DDI 

extraction framework beyond the corpus of cardiovascular drugs on which it was trained. 

We selected one DailyMed Structured Product Label for each of the 84 drugs not already 

covered by our corpus. Priority was given to labels for injectable forms when available, to oral 

forms otherwise (as opposed to topical forms, for which DDIs may not be systematically 

mentioned). We ran the extraction process on this dataset (2554 sentences) and identified 620 

sentences containing a drug interaction. Of these, 104 sentences contained the two drugs 

corresponding to a DDI from the ONC high-priority list, 310 sentences contained only one of the 

two drugs corresponding to a DDI from the ONC high-priority list, and 206 sentences did not 

contain any of the two drugs corresponding to a DDI from the ONC high-priority list. Overall, of 

the 360 DDIs from the ONC high-priority list, only 59 pairs could be found within the 104 

sentences in which the two drugs were found.  

The performance on this dataset seems mediocre, since we could find evidence for only 59 of the 

360 DDIs. However, the main problem here is not really that our system fails to extract DDI 

relations expressed between two specific drugs in a sentence, but rather that a majority of these 

DDIs are expressed without mentioning the two specific drugs. In the discussion section, we 

present a specific analysis of these sentences and make recommendations for future work. 



5. Discussion 

In this section we evaluate the significance of our work, present a failure analysis (false positive 

and false negative cases in DDI extraction), and analyze specifically the cases of missed 

evidence for the ONC High-Priority DDIs. We also briefly discuss the limitations and possible 

applications of this work. 

5.1. Significance 

Overall. This investigation is the first to consider the DailyMed structured product labels as a 

source of DDIs for automatic extraction. The performance of our DDI extraction framework is 

competitive with that of state-of-the-art machine learning systems reported in the SemEval DDI 

challenge. Moreover, we achieve good performance not only on our DailyMed corpus, but also 

on the corpus used in the SemEval DDI challenge itself, demonstrating that our DDI extraction 

framework is effective beyond the corpus on which it was originally developed. Of note, lower 

recall is observed for decrease interactions, for which there are few annotations. The 

performance observed on the task of finding evidence in DailyMed for the ONC high-priority 

DDIs is both surprising and disappointing. However, it turns out that the expression of the DDIs 

through classes (rather than individual drugs) is responsible for it. In other words, our system did 

not extract these DDIs, mostly because the two specific drugs were not mentioned together in a 

sentence. A detailed analysis of these cases is provided later. 

Parameter selection and cross-validation accuracy. Among the trained models, we selected the 

model maximizing both F-measure and precision (n-gram = 3, window-size = 3). These 

parameters provide the best and most robust configuration for the automatic extraction of drug-

drug interactions from DailyMed, as they minimize the number of false positives to be reviewed 

by curators subsequently. As expected, a small n-gram size generally favored recall, while a 



larger n-gram favored precision. We analyze the generalization potential by comparing 10-fold 

cross-validation accuracy scores with those on the test sets. On our DailyMed annotated DDI 

corpus, we report an average accuracy of 97.20% (training set) and 95.18% (test set) for pair 

classification, 99% and 100% (respectively) for role classification, and 91% and 88.19% 

(respectively) for type classification. As expected, 10-fold cross-validation accuracy is lower on 

the combined SemEval DDI corpus because of its diversity (DrugBank and MEDLINE). 

5.2. Failure Analysis of DDI extraction 

Here are some examples of misclassified sentences, along with typical reasons for 

misclassification. False positives often occur in long sentences with complex structures. Several 

errors are also due to inaccurate concept identification by MetaMap. Finally, cases in which the 

two drug entities identified are a drug class and one of its instances could be eliminated with 

additional filtering. Examples of false positives are presented in Table 5. False negatives are 

generally associated with very short sentences or complex sentences containing multiple 

interactions. Examples of false negatives are shown in Table 6. 

  



Table 5. False Positives 

Sentence in DailyMed False Positive Pair Possible Explanation 

Hypokalemia may develop with LASIX, especially with brisk 

diuresis, inadequate oral electrolyte intake, when cirrhosis is present, 

or during concomitant use of corticosteroids, ACTH, licorice in large 

amounts, or prolonged use of laxatives. 

corticosteroids-

laxatives 

 

Long sentence with several drugs. 

In patients with an activated renin-angiotensin-aldosterone system, 

such as volume - or salt-depleted patients receiving high doses of 

diuretics, symptomatic hypotension may occur in patients receiving 

renin-angiotensin-aldosterone system (RAAS ) blockers. 

diuretics-renin-

angiotensin-

aldosterone 

 

MetaMap wrongly identifies an entity  

renin-angiotensin-aldosterone is not a drug 

As with other beta blockers, when discontinuation of TENORMIN is 

planned, the patients should be carefully observed and advised to 

limit physical activity to a minimum. 

beta blockers-

TENORMIN 

 

Drug instance of a drug class, not drug-drug 

class interaction. Such cases can be captured 

using standard terminologies. 

 

Table 6. Examples of False Negatives 

Sentence in DailyMed False Negative Pair Possible Explanation 

Phenytoin decreases serum amiodarone levels. Phenytoin-

amiodarone 

Short sentences may lead to false negatives 

due to lack of context. 

Use amiodarone with caution in patients receiving - receptor blocking 

agents (e.g. , propranolol, a CYP3A inhibitor) or calcium channel 

antagonists (e.g., verapamil, a CYP3A substrate, and diltiazem, a 

CYP3A inhibitor) because of the possible potentiation of bradycardia, 

sinus arrest, and AV block, if necessary, amiodarone can continue to 

be used after insertion of a pacemaker in patients with severe 

bradycardia or sinus arrest. 

amiodarone-calcium 

channel antagonists 

 

Long sentences describing multiple 

interactions, composed of drug classes with 

examples of drug class members. Such 

sentences need additional processing, first 

decomposed and simplified. This example 

would then be transformed into several short 

sentences that are much simpler for the 

classifier. 

 



5.3. Analysis of missed evidence for the ONC High-Priority DDIs  

We conducted a specific analysis of the missed evidence for the ONC High-Priority DDIs. As 

mentioned earlier, in many cases the sentences found in DailyMed for these drugs contained the 

mention of only one of the two individual drugs from the ONC high-priority DDIs. Causes for 

the missing mention of the other specific drug include reference to it through a drug class and 

anaphoric reference (e.g., through a pronoun). While our system is designed to extract DDIs 

between a specific drug and a drug entity, it does not resolve drug classes to their individual drug 

members. It does not perform anaphora resolution either.  

We performed further analysis of 310 DDI sentences in which only one specific drug was found, 

in order to determine which of these two causes was primarily responsible for missed evidence 

for the ONC High-Priority DDIs. In all but one case (309), the second drug entity was referred to 

through a drug class. The remaining case corresponds to an anaphoric reference. 

We further investigated the mentions of drug classes within the 309 sentences. We attempted to 

resolve drug class names against standard terminologies, such as ATC, MeSH and NDF-RT, 

using the RxClass API4. Only 7 standard classes could be found. Using the RxClass API, we 

retrieved the members of these drug classes and, in all cases, were able to find the second drug of 

the ONC high-priority DDI among the members of the class we identified. Most of the classes 

that were not present in standard terminologies corresponded to classes defined in relation to the 

Cytochrome P450 (CYP). The majority of them (250) were inducers or inhibitors of CYP 

enzymes (e.g., “Coadministration of a CYP3A4 and UGT1A1 inhibitor has the potential to 

increase systemic exposure to SN-38, the active metabolite of irinotecan.”), which we extracted 

4 RxClass -  http://mor.nlm.nih.gov/RxClass/ - accessed 10/29/2014 

                                                 

http://mor.nlm.nih.gov/RxClass/


using simple string matching techniques. Members of these classes were resolved against the 

Cytochrome P450 Drug Interaction Table (www.drug-interactions.com). After retrieving the 

drugs corresponding to these CYP classes, we were able to find the second drug of the ONC 

high-priority DDI among the members of the class we identified in 240 of the 250 cases. 

This specific analysis demonstrates the prevalence of drug classes, including non-standard drug 

classes, in the expression of DDIs in DailyMed structured product labels. It also emphasizes the 

need for including resolution of these classes as part of DDI extraction systems, in particular 

when reference DDIs are expressed at the level of individual drugs. 

5.4. Limitations and future work 

Although our system shows good performance on several DDI corpora, we also noted several 

limitations, namely lack of anaphora resolution (for drugs mentioned through a reference in the 

DDI sentence) and lack of resolution of drug classes. We are currently addressing anaphora 

resolution, which is made possible by the fact that anaphoric references were annotated in our 

corpus (but originally not taken into account by our DDI extraction system). The analysis 

presented earlier demonstrates the possibility of resolving most drug classes, standard or not. 

However, specific processing of these drug classes is required, because non-standard drug 

classes are generally not recognized by MetaMap. 

5.5. Application Scenarios 

The main application of this research is to support the curation of DDIs systematically extracted 

from DailyMed structured product labels. This use case was suggested to us by our partner, the 

FDA. Beyond the pilot phase reported on in this paper, systematic extraction would require 

processing all the DailyMed structured product labels. The collection of DDIs obtained after 

curation is expected to be an important resource for clinical decision support. 

http://www.drug-interactions.com/


6. Conclusion   

Our work is novel as the first attempt to extract drug-drug interactions from the DailyMed 

structured product labels, piloted on cardiovascular drugs. We provide the first publicly available 

toolkit that transforms a product label into a structured list of DDIs. We also make the annotated 

corpus of 180 structured product labels we used to develop our extraction process available for 

download at http://lhce-brat.nlm.nih.gov/NLMDDICorpus.htm. Our feature space, which is an 

extension of the shallow linguistic kernel proposed by [27] shows good generalization capability, 

both to other corpora and to other drug classes. Our future work includes the extraction of DDIs 

from the entire DailyMed dataset, as well resolution of drugs referred to anaphorically and 

through drug classes. We therefore consider our work as a significant step towards the design of 

efficient, scalable and robust methods for DDI extraction.  
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Appendices 

1. Feature Space Parameter Selection 

Feature set Configuration 

N=n-gram size 

W=window size 

Precision Recall F-measure 

Bag of words Features 

(baseline) 

N=1 

N=2 

N=3 

0.573 

0.689 

0.689 

0.902 

0.894 

0.888 

0.701 

0.778 

0.776 

Global Context Features 

(n-grams of stems) 

N=1 

N=2 

N=3 

0.687 

0.738 

0.728 

0.885 

0.861 

0.855 

0.774 

0.795 

0.786 

Global Context Features 

(n-grams of stems, POS tags and sparse stems) 

N=1 

N=2 

N=3 

0.676 

0.744 

0.793 

0.887 

0.853 

0.846 

0.767 

0.795 

0.819 

Shallow  

Linguistic  

(n-grams of stems and POS tags, sparse stems 

and local context features) 

N=1, W=3 

N=2, W=3 

0.797 

0.808 

0.872 

0.869 

0.833 

0.837 

Shallow Linguistic (95.52 CV accuracy) 

(same features as above) 

N=3, W=3 0.818 0.869 0.842 

 

  



2. Contribution of Individual Feature Spaces 

Type of feature space Precision Recall  F-measure 

Local context only (LC) 

Window size 3 

0.74 0.826 0.781 

Global context only (GC) 

n-gram size 3 

0.778 0.854 0.814 

SL (LC + GC) 

Window, n-gram 3 

0.818 0.869 0.842 

 

  



3. Contribution of global context feature categories  

Feature category Precision Recall  F-measure 

1. N-grams of stems only 0.766 0.864 0.812 

2. + N-grams of POS tags 0.816 0.869 0.841 

3.  1+2   + Sparse stems 0.818 0.869 0.842 

4.   1+2   + Sparse POS Tags 0.797 0.861 0.828 

5.   1+ 2+ 3 +4 0.805 0.854 0.829 

 

  



4. Contribution of features spaces for type classification 

Type of feature space Type Precision Recall  F-measure 

Local context only (LC) 

Window size 3 

Specific 0.837 0.889 0.862 

Caution 0.865 0.851 0.858 

Increase 0.794 0.832 0.813 

Decrease 0.795 0.484 0.602 

Global context only (GC) 

n-gram size 3 

Specific 0.907 0.910 0.909 

Caution 0.898 0.913 0.905 

Increase 0.842 0.892 0.866 

Decrease 0.812 0.609 0.696 

SL (LC + GC) 

Window, n-gram 3 

Specific 0.893 0.926 0.909 

Caution 0.918 0.888 0.903 

Increase 0.843 0.897 0.869 

Decrease 0.812 0.625 0.714 

 

  



5. Contribution of features spaces for Role classification 

Type of feature space Type Precision Recall  F-measure 

Local context only (LC) 

Window size 3 

1 0.769 0.938 0.845 

2 0.983 0.930 0.956 

Global context only (GC) 

n-gram size 3 

1 1 1 1 

2 1 1 1 

SL (LC + GC) 

Window, n-gram 3 

1 1 1 1 

2 1 1 1 
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