ROLE OF PERIOSTEUM AND BONE MARROW IN LENGTHENING: A QUANTITATIVE STUDY IN RABBITS USING DXA

J-M. Guichet, P. Braillon, O. Bodemerieder, P. Lascombes
1. Dept of Orthopaedic Surgery, Children’s Hospital, 54151 Vandoeuvre-Les-Nancy, 2. Dept of Radiology, Edouard Herriot Hospital, 69437 Lyon, 3. Dept of Statistics, School of Medicine, University of Nancy, 54500 Vandoeuvre-Les-Nancy, France.

INTRODUCTION: This study evaluates quantitatively the bone formation due to periossteum and/or bone marrow-endosteum in distraction osteogenesis.

MATERIALS AND METHODS: Surgical procedure. One femur of 18 osteogenesis. due to periosteum and/or bone marrow-endosteum in distraction were elevated; P: P stripped from the bone; BM': corticotomy; BM-: marrow energy x-my absorptiometry study (QDRlCOO, Hologic). The area, bone POD 30, femora were harvested with a 0.5 to 1.0 mm muscle layer. Dual below. Statistical study (JMP V2.0, SAS). Values (% obtained= [op. femur P+BM+ (5 animals); 2) P+BM' (5); 3) P-BM+ (5); 4) P-BM- (3). From POD 5, femora were lengthened 0.25 mmxUDay until POD 25. At sacrifice on POD 30, femora were harvested with a 0.5 to 1.0 mm muscle layer. Dual energy x-ray absorptiometry study (QDR1000, Hotopac). The area, bone mineral density (BMD) were calculated. Femora were divided into 5 regions of interest, operated, or 4, as shown below. Statistical study (JMP V2.0, SAS). Values (% obtained= [op. femur non-op. femur/op. femur) were transformed to range between 0 and 1, then to ensure a normal distribution (arcsin). The P effect (P vs. P', without considering the role of BM), BM* vs. BM*), and their interaction were studied. ANOVA and MANOVA tests compared data from regions 1-5. Differences between groups were analyzed (Tukey-Kramer test).

RESULTS: X-ray evaluation: BM forms bone around the distraction gap. The interaction between P and BM is significant. The spatial distribution of the bone formed is different for P and BM. BM deposits new bone around itself, at the fracture or distraction site, and P forms bone along the elevated P and covers a larger area.

CONCLUSION: Quantitatively, the P contributes more than the BM to healing in distraction. The interaction between P and BM is significant. The spatial distribution of the bone formed is different for P* and BM: BM deposits new bone around itself, at the fracture or distraction site, and P forms bone along the elevated P and covers a larger area.

CONCLUSION: A synergistic effect (spatial and qualitative) may result from the combination of periossteum and bone marrow-endosteum in bone healing.

Table I. Measurements on the whole specimens (W) and in the 3 central regions (C) in the 4 groups: % increase in area, BMC and BMD, for the op. femur / non-op. femur (mean ± 1 SD).

Table II. Effects (+ or - , with probability p) of Periossteum (P), bone marrow (BM) and interaction P/BM (PB) on the area, BMC & BMD of the whole specimens (W) and of the 3 central regions of interest, around the distraction gap (C).

---

Friday, July 10th, 1998 - Orthopaedic Implants -

IN VIVO DETERMINATION OF INTERNAL/EXTERNAL ROTATION OF THE FEMUR RELATIVE TO THE TIBIA


INTRODUCTION: The exact pattern of axial tibiofemoral rotation after TKA is unclear. The objective of this study was to assess in vivo axial tibiofemoral rotation after posterior cruciate retaining (PCR) and posterior cruciate substituting (PS) total knee arthroplasty (TKA).

METHODS: Thirty-two subjects (19 PS, 13 PCR) were studied under fluoroscopic surveillance performing weight bearing deep knee bends to maximum flexion. Three-dimensional solid CAD models of the femoral and tibial components were fit onto the 2D silhouette images using a model fitting technique. Femoral contact points for the medial and lateral condyles were determined for the four flexion angles. A line was then created from the medial condyle contact point to the lateral condyle contact point. The angle between this line and the midline of the tibia in the coronal plane was measured and denoted as the screwhome angle. A positive angle was denoted as normal screwhome rotation (tibia internally rotates with flexion) and a negative angle was denoted as reverse screwhome rotation.

RESULTS: Previous studies have shown that the normal knee exhibits between 10 and 16 degrees of screwhome rotation during flexion [1]. The average amount of screwhome rotation for subjects in this study was 9.74 and 0.55 degrees for the PS and PCR-implanted knees, respectively. All 19 subjects having a PS-implanted knee and 9 of 13 subjects having a PCR-implanted knee exhibited a normal screwhome pattern from 0 to 90 degrees of knee flexion. Four of the subjects having a PCR-implanted knee demonstrated a reverse screwhome pattern. Rotation patterns in both groups were erratic, with 10 of 16 subjects with a PS TKA (62.5 percent) and 10 of 13 with a PCR TKA (76.9 percent) demonstrating a reverse screwhome pattern at one of the three evaluated flexion ranges, most commonly at 60-90 degrees.

CONCLUSION: This analysis demonstrates reverse screwhome rotation can occur, most commonly after PCR TKA. This may be related, in part, to abnormal anterior femoral translation during flexion that has been observed in previous in vivo kinematic studies. Reverse screwhome rotation is potentially detrimental, enhancing the risk of patellofemoral instability, and premature polyethylene wear.


ACKNOWLEDGEMENTS: Johnson & Johnson Professional, Inc. VWorks, Palm Harbor, FL.

CORRESPONDENCE: Dr. Richard Komistek, Rose Musculoskeletal Research Laboratory, 2425 So Colorado Blvd, Suite 280, Denver, CO 80222, USA, Phone: (303)-759-1490, Fax: (303)-759-2316, wmkw29a@prodigy.com

---