From *terminology* integration
to *information* integration

An example in the domain of genomics
Outline

◆ Background
 ● Terminology integration:
 The Unified Medical Language System
 ● Information integration:
 Genomics as an example

◆ Applications
 ● GenesTrace
 ● BioMeKe
Terminology integration

The Unified Medical Language System
Motivation

- Started in 1986
- National Library of Medicine
- “Long-term R&D project”
- Complementary to IAIMS (Integrated Academic Information Management Systems)

“[...] the UMLS project is an effort to overcome two significant barriers to effective retrieval of machine-readable information.

- The first is the variety of ways the same concepts are expressed in different machine-readable sources and by different people.
- The second is the distribution of useful information among many disparate databases and systems.”
Source Vocabularies

134 source vocabularies
- 132 contributing concept names

~80 families of vocabularies
- multiple translations (e.g., MeSH, ICPC, ICD-10)
- variants (American-English equivalents, Australian extension/adaptation)
- subsequent editions usually considered distinct families (ICD: 9-10; DSM: IIIR-IV)

Broad coverage of biomedicine

Common presentation
Biomedical terminologies

◆ General vocabularies
 ● anatomy (UWDA, Neuronames)
 ● drugs (RxNorm, First DataBank, Micromedex)
 ● medical devices (UMD, SPN)

◆ Several perspectives
 ● clinical terms (SNOMED CT)
 ● information sciences (MeSH, CRISP)
 ● administrative terminologies (ICD-9-CM, CPT-4)
 ● data exchange terminologies (HL7, LOINC)
Biomedical terminologies (cont’d)

- **Specialized vocabularies**
 - nursing (NIC, NOC, NANDA, Omaha, PCDS)
 - dentistry (CDT)
 - psychiatry (DSM, APA)
 - adverse reactions (COSTART, WHO ART)
 - primary care (ICPC)
 - genomics (GO, OMIM, HUGO)

- **Terminology of knowledge bases** (AI/Rheum, DXplain, QMR)

The UMLS serves as a vehicle for the regulatory standards (HIPAA, CHI)
Integrating subdomains

- Clinical repositories
- Genetic knowledge bases
- Biomedical literature
- SNOMED
- OMIM
- MeSH
- UMLS
- Other subdomains
- Model organisms
- NCBI Taxonomy
- UWDA
- GO
- Anatomy
- Genome annotations
Integrating subdomains

- Clinical repositories
- Genetic knowledge bases
- Biomedical literature
- Genome annotations
- Anatomy
- Model organisms
- Other subdomains
UMLS: 3 components

- **Metathesaurus**
 - Concepts
 - Inter-concept relationships

- **Semantic Network**
 - Semantic types
 - Semantic network relationships

- **Lexical resources**
 - SPECIALIST Lexicon
 - Lexical tools
Addison’s Disease: Concept

A disease characterized by hypotension, weight loss, anorexia, weakness, and sometimes a bronze-like melanotic hyperpigmentation of the skin. It is due to tuberculosis- or autoimmune-induced disease (hypofunction) of the adrenal glands that results in deficiency of aldosterone and cortisol. In the absence of replacement therapy, it is usually fatal.
Metathesaurus Concepts (2005AA)

<table>
<thead>
<tr>
<th>Concept (~ 1.2M)</th>
<th>CUI</th>
<th>Set of synonymous concept names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term (~ 4.2 M)</td>
<td>LUI</td>
<td>Set of normalized names</td>
</tr>
<tr>
<td>String (~ 4.7M)</td>
<td>SUI</td>
<td>Distinct concept name</td>
</tr>
<tr>
<td>Atom (~ 5.5M)</td>
<td>AUI</td>
<td>Concept name in a given source</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0000001</td>
<td>headache</td>
<td>(source 1)</td>
</tr>
<tr>
<td>A0000002</td>
<td>headache</td>
<td>(source 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S0000001</td>
</tr>
<tr>
<td>A0000003</td>
<td>Headache</td>
<td>(source 1)</td>
</tr>
<tr>
<td>A0000004</td>
<td>Headache</td>
<td>(source 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S0000002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L0000001</td>
</tr>
<tr>
<td>A0000005</td>
<td>Cephalgia</td>
<td>(source 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S0000003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L0000002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C0000001</td>
</tr>
</tbody>
</table>
Cluster of synonymous terms

| Concept | Term | L0001621 | S0011232 Adrenal Gland Diseases
S0011231 Adrenal Gland Disease
S0000441 Disease of adrenal gland
S0481705 Disease of adrenal gland, NOS
S0220090 Disease, adrenal gland
S0044801 Gland Disease, Adrenal |
|---------|------|-----------|--|
| Term | L0041793 | S0860744 Disorder of adrenal gland, unspecified
S0217833 Unspecified disorder of adrenal glands |
| Term | L0161347 | S0225481 ADRENAL DISORDER
S0627685 DISORDER ADRENAL (NOS) |
| Term | L0181041 | S0632950 Disorder of adrenal gland
S0354509 Adrenal Gland Disorders |
| Term | L0368399 | S0586222 Adrenal disease
S0466921 ADRENAL DISEASE, NOS |
| Term | L1279026 | S1520972 Nebennierenkrankheiten
GER |
| Term | L0162317 | S0226798 SURRENALE, MALADIES
FRE |

Lister Hill National Center for Biomedical Communications
Metathesaurus Evolution over time

◆ Concepts never die (in principle)
 ● CUIs are permanent identifiers

◆ What happens when they do die (in reality)?
 ● Concepts can merge or split
 ● Resulting in new concepts and deletions

Addison’s disease
C0001403

Addison’s disease, NOS
C0271735

Metathesaurus Relationships

- Symbolic relations: ~9 M pairs of concepts
- Statistical relations: ~7 M pairs of concepts (co-occurring concepts)
- Mapping relations: 100,000 pairs of concepts

- Categorization: Relationships between concepts and semantic types from the Semantic Network
Symbolic relations

◆ Relation
 • Pair of “atom” identifiers
 • Type
 • Attribute (if any)
 • List of sources (for type and attribute)

◆ Semantics of the relationship:
 defined by its type [and attribute]

Source transparency: the information
is recorded at the “atom” level
Symbolic relationships

- **Hierarchical**
 - Parent / Child
 - Broader / Narrower than

- **Derived from hierarchies**
 - Siblings (children of parents)

- **Associative**
 - Other

- **Various flavors of near-synonymy**
 - Similar
 - Source asserted synonymy
 - Possible synonymy

Type:
- PAR/CHD
- RB/RN
- SIB
- RO
- RL
- SY
- RQ
Symbolic relationships

◆ Hierarchical
 - isa (is-a-kind-of)
 - part-of

◆ Associative
 - location-of
 - caused-by
 - treats
 - ...

◆ Cross-references (mapping)
Lexical tools

- To manage lexical variation in biomedical terminologies

- Major tools
 - Normalization
 - Indexes
 - Lexical Variant Generation program (lvg)

- Based on the SPECIALIST Lexicon

- Used by noun phrase extractors, search engines
Normalization

Remove genitive: Hodgkin’s diseases, NOS
Remove stop words: Hodgkin diseases, NOS
Lowercase: Hodgkin diseases,
Strip punctuation: hodgkin diseases,
Uninflect: hodgkin diseases
Sort words: hodgkin disease
disease hodgkin
Normalization: Example

Hodgkin Disease
HODGKINS DISEASE
Hodkin's Disease
Disease, Hodgkin's
Hodkin's, disease
HODGKIN'S DISEASE
Hodgkin's disease
Hodgkins Disease
Hodgkin's disease NOS
Hodgkin's disease, NOS
Disease, Hodgkins
Diseases, Hodgkins
Hodgkins Diseases
Hodgkins disease
hodgkin's disease
Disease, Hodgkin
Information integration

Genomics as an example
Neurofibromatosis 2 is an autosomal dominant disease characterized by tumors called schwannomas involving the acoustic nerve, as well as other features. The disorder is caused by mutations of the NF2 gene resulting in absence or inactivation of the protein product. The protein product of NF2 is commonly called merlin (but also neurofibromin 2 and schwannomin) and functions as a tumor suppressor.
Schwannoma (acoustic neuroma)

http://www.mayoclinic.com
NF2 gene

http://staff.washington.edu/timk/cyto/human/

Merlin

- **Synonyms**
 - Neurofibromin 2
 - Schwannomin
 - Schwannomerlin
 - Neurofibromatosis-2

- **10 isoforms**

- **Annotations**
 - Negative regulation of cell proliferation
 - Cytoskeleton
 - Plasma membrane
Neurofibromatosis 2
(Type II neurofibromatosis, Bilateral acoustic neurofibromatosis)
C0027832

C0085114
Merlin
(Schwannomin, Neurofibromin 2)

C0254123
NF2
(Neurofibromin 2 gene)

UMLS Metathesaurus
(Concepts and relations)

Gene or Genome

Neoplastic Process

Biologically Active Substance

Amino Acid, Peptide, or Protein

Omim Genbank

External resources

Neurofibromatosis 2
(Type II neurofibromatosis, Bilateral acoustic neurofibromatosis)
C0027832

Merlin
(Schwannomin, Neurofibromin 2)
C0254123

Merlin, Drosophila

Drosophila melanogaster merlin (Dmerlin) mRNA, complete cds.
U49724

Neurofibromatosis 2, Type II; NF2 #101000

UMLS Semantic Network (Semantic Types)
Limitations

- **Genes not systematically represented**
 - Most gene products and diseases are

- **Gene/Gene product-Disease relations**
 - Not systematically represented
 - Not explicitly represented (e.g., co-occurrence)

- **Cross-references not systematically represented**

- **Naming conventions (genes)**
Applications (1)

GenesTrace™

Lussier Lab
Columbia University
Objectives

- Relate diseases to genes through structured, integrated terminologies

- Biological Knowledge Discovery
Resources and Methods

1. Start from a disease in UMLS
2. Select related concepts
3. Map related UMLS concepts to genes and GO terms
4. Relate GO terms to genes
Validation Breast cancer – BRCA1 association

1. Disease = Breast neoplasms
2. 2129 related concepts
3. Several related genes and 168 related GO terms
4. 10,000 gene products associated (including BRCA1)
Limitations

◆ Noise
 - Too many non-specific GO terms associated (e.g., *nucleus*)
 - Too many genes associated

◆ But
 - Promising preliminary results
 - Room for refinement
GenesTrace Online

Search GenesTrace for diseases and genes sharing identical processes, functions or biological structures.

Disease or Gene......

Query using......... Disease complete name in UMLS

Please select the species database from below
- Fly(FB)
- Mouse(MGI)
- Worm(WB)
- Yeast(SGD)
- Swissprot(SPTR)

Submit Query
Applications (2)

BioMeKe

G. Marquet & al.
LIM, Univ. Rennes, France
Objectives

- To develop a knowledge warehouse for transcriptome analysis (liver diseases)
- Semantic interoperability
 - Medical knowledge bases
 - Clinical genomics
 - Molecular biology and genetics knowledge bases
 - Functional genomics
Components

Core Ontology

- HUGO
- UMLS
- GO
- Annotations
- Swiss-Prot
- GenBank
- MEDLINE

Cross-referenced resources

Query Processor

- Biological search module
- Heterogeneity manager
- Medical search module
Example

◆ **Input:** *ferritin, heavy polypedpide 1*

◆ **Mapping to biological resources**
 - Not found in the Core ontology
 - Official name *Ferritin heavy chain* found through Xref

◆ **Biological information obtained from GOA**

◆ **Mapping to medical resources**
 - Not found in UMLS
 - Synonym *Ferritin H* found through Xref (Swiss-Prot)

◆ **Medical information obtained through co-occurrence of MeSH index terms in MEDLINE**
Results

FTH1

BioMeKe

- iron binding protein
- iron ion homeostasis
- intracellular iron ion storage
- cell proliferation
- ferritin complex

- liver
- hemochromatosis
- cataract
- ...

Biological annotations

Medical annotations
Limitations

◆ Non-formal ontologies
 - Knowledge may be inconsistently represented
 - Knowledge may be implicit (mappings)

◆ Partial automation
 - User input required to select databanks, reformulate queries

◆ Semantic integration
 - Naming issues
 - Mappings must be updated regularly
Biological and Medical Knowledge Extraction system

BioMeKe has been achieved to extract and to associate Medical and Biological information such as Gene Ontology™, Unified Medical Language System®, Genew...

BioMeKe is an ontology-based tool composed of two-part:

- Consultation of Ontology and link with Public Databank
- Biological and Medical annotation

Genomic and Biological Resources in BioMeKE:

Genew: Lexical resources providing official gene names and their synonyms and links to multiple other databases including Uniprot, LocusLink.

Gene Ontology (GO): General "ontology" for molecular biology which provides a controlled vocabulary for annotating sequences and genes products.

GeneOntology Annotation@EBI (GOA): Provides assignments of GO terms to genes products for all organisms, including human.
Conclusions
Conclusions

- Terminology integration provides some degree of information integration
- Most terminologies and the cross-referenced databases are readily available

- Lack of consistent representation
- Additional resources/techniques needed
Medical Ontology Research

Contact: olivier@nlm.nih.gov
Web: mor.nlm.nih.gov

Olivier Bodenreider
Lister Hill National Center for Biomedical Communications
Bethesda, Maryland - USA
Questions

- What do I need to do to get the UMLS?
- What is an ontology?
- How is ontology different from
 - Terminology? / Database? / Knowledge base?
- Is the UMLS an ontology?
- Does the UMLS use Protégé?
- I heard of OWL. Is that any good?
- What is the Semantic Web going to do for us?
References UMLS

◆ UMLS
 umlsinfo.nlm.nih.gov

◆ UMLS browser
 - Semantic Navigator:
 - (free, but UMLS license required)

◆ UMLS and information integration
References

◆ GenesTrace
 - http://phene.cpmc.columbia.edu:8080/genesTrace/index.jsp

◆ BioMeKE