Overview

- An example
- Three types of resources
 - Lexical resources
 - Terminological resources
 - Ontological resources
- Some issues
An example

Neurofibromatosis 2
Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.

Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.
Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.

- vestibular schwannomas *manifestation of* neurofibromatosis 2
- neurofibromatosis 2 *associated with* mutation of NF2 gene
- NF2 gene *located on* chromosome 22
Resources for text mining
Types of resources

<table>
<thead>
<tr>
<th>Lexical resources</th>
<th>Ontological resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Collections of lexical items</td>
<td>- Collections of</td>
</tr>
<tr>
<td>- Additional information</td>
<td></td>
</tr>
<tr>
<td>- Part of speech</td>
<td></td>
</tr>
<tr>
<td>- Spelling variants</td>
<td></td>
</tr>
<tr>
<td>- Useful for entity recognition</td>
<td>- Useful for relation extraction</td>
</tr>
<tr>
<td>- UMLS SPECIALIST Lexicon, WordNet</td>
<td>- UMLS Semantic Network, SNOMED CT</td>
</tr>
</tbody>
</table>
Types of resources (revisited)

- **Lexical and terminological resources**
 - Mostly collections of names for biomedical entities
 - Often have some kind or hierarchical organization (e.g., relations)

- **Ontological resources**
 - Mostly collections of relations among biomedical entities
 - Sometimes also collect names
Unified Medical Language System

- **SPECIALIST Lexicon**
 - 200,000 lexical items
 - Part of speech and variant information

- **Metathesaurus**
 - 5M names from over 100 terminologies
 - 1M concepts
 - 16M relations

- **Semantic Network**
 - 135 high-level categories
 - 7000 relations among them
Lexical resources

SPECIALIST Lexicon
SPECIALIST Lexicon

◆ Content
 ● English lexicon
 ● Many words from the biomedical domain
◆ 200,000+ lexical items
◆ Word properties
 ● morphology
 ● orthography
 ● syntax
◆ Used by the lexical tools
SPECIALIST Lexicon record

{
 base=hemoglobin (base form)
 spelling_variant=haemoglobin
 entry=E0031208 (identifier)
 cat=noun (part of speech)
 variants=uncount (no plural)
 variants=reg (plural: hemoglobins, haemoglobins)
}

Lexical tools

- To manage lexical variation in biomedical terminologies
- Major tools
 - Normalization
 - Indexes
 - Lexical Variant Generation program (lvgl)
- Based on the SPECIALIST Lexicon
- Used by noun phrase extractors, search engines
Normalization

1. Remove genitive: Hodgkin’s diseases, NOS
2. Remove stop words: Hodgkin diseases, NOS
3. Lowercase: Hodgkin diseases,
4. Strip punctuation: hodgkin diseases,
5. Uninflect: hodgkin diseases
6. Sort words: hodgkin disease
 disease hodgkin
Normalization: Example

Hodgkin Disease
HODGKINS DISEASE
Hodgkin's Disease
Disease, Hodgkin's
Hodgkin's, disease
HODGKIN'S DISEASE
Hodgkin's disease
Hodgkins Disease
Hodgkin's disease NOS
Hodgkin's disease, NOS
Disease, Hodgkins
Diseases, Hodgkins
Hodgkins Diseases
Hodgkins disease
hodgkin's disease
Disease, Hodgkin

normalize
disease hodgkin
Normalization Applications

- Model for lexical resemblance
- Help find lexical variants for a term
 - Terms that normalize the same usually share the same LUI
- Help find candidates to synonymy among terms
- Help map input terms to UMLS concepts
Terminological resources

UMLS Metathesaurus
Source Vocabularies

- 134 source vocabularies
 - 132 contributing concept names
- Broad coverage of biomedicine
 - 5M names
 - 1M concepts
 - 16M relations
- Common presentation
Integrating subdomains

- Clinical repositories
- Genetic knowledge bases
 - UMLS
 - MeSH
- Biomedical literature
 - Genome annotations
- Other subdomains
 - SNOmed
 - OMIM
 - ... (other subdomains)
- Model organisms
 - NCBI Taxonomy
- Anatomy
 - UWDA
- Genetic knowledge bases
 - GO
 - SNOMED
 - OMIM
 - UMLS
A disease characterized by hypotension, weight loss, anorexia, weakness, and sometimes a bronze-like melanotic hyperpigmentation of the skin. It is due to tuberculosis- or autoimmune-induced disease (hypofunction) of the adrenal glands that results in deficiency of aldosterone and cortisol. In the absence of replacement therapy, it is usually fatal.
Organize concepts

- Inter-concept relationships: hierarchies from the source vocabularies
- Redundancy: multiple paths
- One graph instead of multiple trees (multiple inheritance)
<table>
<thead>
<tr>
<th>Metathesaurus concepts</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurofibromatosis type 2</td>
<td>s C0027832 Neurofibromatosis 2</td>
</tr>
<tr>
<td>NF2</td>
<td>s C0085114 Neurofibromatosis 2 genes</td>
</tr>
<tr>
<td>peripheral neurofibromatosis</td>
<td>s C0027831 Neurofibromatosis 1</td>
</tr>
<tr>
<td>[bilateral] vestibular schwannomas</td>
<td>a C0027859 Neuroma, Acoustic</td>
</tr>
<tr>
<td>mutation / mutations</td>
<td>s C0026882 Mutation</td>
</tr>
<tr>
<td>gene</td>
<td>s C0017337 Genes</td>
</tr>
<tr>
<td>merlin</td>
<td>m C0254123 Neurofibromin 2</td>
</tr>
<tr>
<td>chromosome 22</td>
<td>s C0008665 Chromosomes, Human, Pair 22</td>
</tr>
</tbody>
</table>
Metahesaurus relations Examples

- **Neurofibromin 2**
 - **Multiple parent concepts**
 - Membrane proteins [MeSH]
 - Tumor suppressor proteins [MeSH]
 - Signaling protein [NCI Thesaurus]
 - **1 child concept**
 - Merlin, Drosophila [MeSH]
 - **Co-occurring concepts in MEDLINE**
 - Neurofibromatosis 2 [13]
 - Membrane proteins [8]
 - ...
Ontological resources

UMLS Semantic Network
Semantic Network

- Semantic types (135)
 - tree structure
 - 2 major hierarchies
 - Entity
 - Physical Object
 - Conceptual Entity
 - Event
 - Activity
 - Phenomenon or Process
Semantic Network

- Semantic network relationships (54)
 - hierarchical (isa = is a kind of)
 - among types
 - Animal isa Organism
 - Enzyme isa Biologically Active Substance
 - among relations
 - treats isa affects
 - non-hierarchical
 - Sign or Symptom diagnoses Pathologic Function
 - Pharmacologic Substance treats Pathologic Function
“Biologic Function” hierarchy (isa)

Biologic Function

Physiologic Function

Organism Function
 Mental Process

Organ or Tissue Function

Cell Function
 Genetic Function

Molecular Function

Pathologic Function

Cell or Molecular Dysfunction
 Mental or Behavioral Dysfunction
 Neoplastic Process

Disease or Syndrome

Experimental Model of Disease
Relationships can inherit semantics

Semantic Network

- Fully Formed Anatomical Structure
- Biologic Function
- Pathologic Function
- Disease or Syndrome
- Body Part, Organ, or Organ Component
- Adrenal Cortex
- Adrenal Cortical hypofunction

location of

isa

Metathesaurus
Other resources

◆ Lexical
 ● WordNet http://wordnet.princeton.edu/
 ● Specialized resources (e.g., for gene names)

◆ Terminological
 ● Gene Ontology http://geneontology.org/
 ● MeSH http://www.nlm.nih.gov/mesh/

◆ Ontological
 ● SNOMED CT http://www.snomed.org/
 ● FMA http://fma.biostr.washington.edu/
 ● OpenGALEN http://www.opengalen.org/
Some issues related to these resources
Ambiguity

NF2

- Neurofibromatosis 2 [disease]
- Neurofibromin 2 [protein]
- Neurofibromatosis 2 gene [gene]
Acronyms and abbreviations

◆ Many algorithms
 ● For identifying acronyms
 ● For extracting the fully specified terms

◆ Can be harvested systematically from the biomedical literature and collected in databases
 ● Biomedical Abbreviation Server
 http://bionlp.stanford.edu/abbreviation/
 ● AcroMed
 http://medstract.med.tufts.edu/acro1.1/index.htm

◆ Ambiguity issue
Limited coverage

- e.g., Gene and protein names
 - Additional sources
 - Additional identification methods

<table>
<thead>
<tr>
<th>Source</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genew</td>
<td>http://www.gene.ucl.ac.uk/nomenclature/</td>
</tr>
<tr>
<td>UniProt</td>
<td>http://www.ebi.uniprot.org/index.shtml</td>
</tr>
</tbody>
</table>
Terminological vs. ontological relations

◆ Purpose-dependent relations in terminologies
 ● *Addison’s disease* *isa* *Autoimmune disorder*
 ● *Accidents* hierarchy in MeSH

◆ Relations used to create hierarchies
 vs. hierarchical relations
Conclusions
Conclusions

- Lexical and terminological resources enable entity recognition
- Terminological and ontological resources enable relation extraction

But...

- Text mining techniques can also benefit
 - Terminologies: term extraction
 - Ontologies: ontology population
References

UMLS documentation and support

- **UMLS homepage**
 http://umlsinfo.nlm.nih.gov/
 - with links to all other UMLS information

- **UMLSKS homepage**
 http://umlsks.nlm.nih.gov/
 - with links to the User’s and Developer’s guides

- **Email address for support**
 custserv@nlm.nih.gov
Medical Ontology Research

Contact: olivier@nlm.nih.gov
Web: mor.nlm.nih.gov

Olivier Bodenreider
Lister Hill National Center for Biomedical Communications
Bethesda, Maryland - USA