Enhancing Ontologies Through Annotations

Olivier Bodenreider
Lister Hill National Center
for Biomedical Communications
Bethesda, Maryland - USA
Outline

- Dependence relations in MeSH and co-occurrence in MEDLINE
- Identifying associative relations in the Gene Ontology
- Linking the Gene Ontology to other biological ontologies: GO-ChEBI
Using Dependence Relations in MeSH as a Framework for the Analysis of Disease Information in Medline
Acknowledgments

◆ Lowell Vizenor

National Library of Medicine, USA
Relations among biomedical entities

◆ Symbolic relations
 ● Represented in biomedical terminologies/ontologies
 ● Explicit semantics
 ■ Hierarchical (*isa, part of*)
 ■ Associative (*location of, causes, …*)

◆ Statistical relations
 ● Represented in text
 ■ Among lexical items (entity recognition)
 ■ Annotations
 ● No explicit semantics
Example Viral meningitis

- CNS disease
- Infectious disease
 - isa
 - Virus
 - caused by
 - Virus
 - located in
 - Meninges
 - Anitviral agents
 - treated by
 - Herpesviridae Infections
 - T-Lymphocytes

18
9
Statistical relations

◆ Crucial for text mining applications
 ● Entity recognition
 ● Frequency of co-occurrence

◆ No semantics

◆ Frequency of co-occurrence used as an indicator of the salience of the relation
An example from MEDLINE

Specific and nonspecific T-cell invasion into cerebrospinal fluid has been investigated in the nonfatal viral meningoencephalitis induced by intracerebral inoculation of mice with vaccinia virus. At the peak of the inflammatory process on Day 7 approximately 5 to 10% of the Lyt 2+ T cells present are apparently specific for vaccinia virus. Concurrently, in mice primed previously with influenza virus, 0.5 to 1.0% of the appropriate T-cell set located in cerebrospinal fluid is reactive to influenza-infected target cells. This vaccinia virus-induced inflammatory exudate may thus contain as many as 500 influenza-immune memory T cells. These findings are discussed from the aspect that such nonspecific T-cell invasion into the central nervous system during aseptic viral meningitis could result in exposure of potentially brain-reactive T cells to central nervous system components. PMID: 6601524

- Brain/immunology
- Cytotoxicity, Immunologic
- Exudates and Transudates/cytology
- Exudates and Transudates/immunology
- Meningitis, Viral/immunology*
- T-Lymphocytes/immunology*
- Vaccinia virus
- Animals
- Humans
- Mice
- Research Support, Non-U.S. Gov't
- Research Support, U.S. Gov't, P.H.S.
Ontological analysis

- Formal ontological distinction
 - Dependence relations
 - Every instance of a class is related to some instances of another class
 - A is ontologically dependent on B if and only if A exists then B exists
 - Contingent relations
 - Only some instances of a class are related to some instances of another class

- CNS disease → CNS
- Viral meningitis → Virus
- aspirin → headache
Statistical vs. ontological

- Can we use formal ontology to help analyze statistical relations?
- What is the relation between ontological and statistical relations?

Hypothesis:
- Correspondence between
 - Dependence relations (ontological)
 - High frequencies of co-occurrence (statistical)
- Dependence relations ↔ Systematically high frequencies of co-occurrence
More formal-ontological distinctions

- **Continuants**
 - Dependent continuants
 - Independent continuants

- **Occurrents**
 - Oxygen transport
 - Glucose metabolism
 - Echocardiography
 - Oxygen transporter
 - B-lymphocyte
 - Mitral valve
 - Streptococcus

- Continue to exist through time?
 - Yes
 - No

- Unfold through time in successive phases?
Application to diseases

- Diseases are (mostly) processes, i.e., occurrents
- Diseases are dependent entities
- Diseases depend on independent continuants
 - Anatomical structures
 - Classification by “location” (body system)
 - Agents (pathogens)
 - Classification by etiology
Participation relation

- Participation relations are dependence relations
- Between processes and biomedical continuants
- **Passive participation:** `has_participant`
 - Viral meningitis `has_participant` Meninges
- **Active participation:** `has_agent`
 - Viral meningitis `has_agent` Virus

- Defined at the instance level
 but can be adapted at the class level
Statistical relations

- **Independent events**
 - $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$

- **Tests of independence**
 - χ^2 test
 - G^2 test (likelihood ratio test)
Objectives

◆ Analyze dependence relations in MeSH and to compare them to statistical relations obtained from co-occurrence data
◆ Restricted to the relations between disease categories and other categories of biomedical interest

◆ Hypothesis:
 ● Co-occurrence relations between diseases and other categories
 ◆ Highest proportion for the dependent category, systematically across diseases
 ◆ Smaller proportions for other non-dependent categories
Materials
Medical Subject Headings (MeSH)

- Controlled vocabulary used to index MEDLINE
- 22,658 descriptors (2004 version)
- 16 tree-like hierarchies
 - Anatomy
 - Organisms
 - Diseases
 - ...

1. Anatomy [A]
2. Organisms [B]
3. Diseases [C]
4. Chemicals and Drugs [D]
5. Analytical, Diagnostic and Therapeutic Techniques and Equipment [E]
6. Psychiatry and Psychology [F]
7. Biological Sciences [G]
8. Physical Sciences [H]
9. Anthropology, Education, Sociology and Social Phenomena [I]
10. Technology and Food and Beverages [J]
11. Humanities [K]
12. Information Science [L]
13. Persons [M]
14. Health Care [N]
15. Publication Characteristics [V]
16. Geographic Locations [Z]
MEDLINE

- 385,491 citations (year 2004)
- Indexed with 20,085 distinct MeSH descriptors

Restrictions

- Starred descriptors only (3.5 / citation, on average)
- Frequency of co-occurrence ≥ 10
- Associations between diseases and other categories
Methods and Results
3. Diseases [C]
 - Bacterial Infections and Mycoses [C01]
 - Virus Diseases [C02]
 - Parasitic Diseases [C03]
 - Neoplasms [C04]
 - Musculoskeletal Diseases [C05]
 - Digestive System Diseases [C06]
 - Stomatognathic Diseases [C07]
 - Respiratory Tract Diseases [C08]
 - Otorhinolaryngologic Diseases [C09]
 - Nervous System Diseases [C10]
 - Eye Diseases [C11]
 - Urologic and Male Genital Diseases [C12]
 - Female Genital Diseases and Pregnancy Complications [C13]
 - Cardiovascular Diseases [C14]
 - Hemic and Lymphatic Diseases [C15]
 - Congenital, Hereditary, and Neonatal Diseases and Abnormalities [C16]
 - Skin and Connective Tissue Diseases [C17]
 - Nutritional and Metabolic Diseases [C18]
 - Endocrine System Diseases [C19]
 - Immune System Diseases [C20]
 - Disorders of Environmental Origin [C21]
 - Animal Diseases [C22]
 - Pathological Conditions, Signs and Symptoms [C23]
Identifying dependence relations

- Manual examination of the 23 top-level disease categories [C tree]
 - Exceptions
 - Pathological conditions, signs and symptoms (C23)
 - Additions
 - Mental disorders (F03)
- Identify the categories in (active or passive) participation relation with the process
Identifying dependence relations

Results

has_participant

<table>
<thead>
<tr>
<th>Pathological process</th>
<th>Anatomical entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musculoskeletal Diseases</td>
<td>Musculoskeletal System</td>
</tr>
<tr>
<td>Digestive System Diseases</td>
<td>Digestive System</td>
</tr>
<tr>
<td>Stomatognathic Diseases</td>
<td>Stomatognathic System</td>
</tr>
<tr>
<td>Respiratory Tract Diseases</td>
<td>Respiratory System</td>
</tr>
<tr>
<td>Nervous System Diseases</td>
<td>Nervous System</td>
</tr>
<tr>
<td>Eye Diseases</td>
<td>Sense Organs (+)</td>
</tr>
<tr>
<td>Urological and Male Genital Diseases</td>
<td>Urogenital System</td>
</tr>
<tr>
<td>Female Genital Diseases and Pregnancy Complications</td>
<td>Urogenital System</td>
</tr>
<tr>
<td></td>
<td>Embryonic Structures</td>
</tr>
<tr>
<td>Cardiovascular Diseases</td>
<td>Cardiovascular System</td>
</tr>
<tr>
<td>Hemic and Lymphatic Diseases</td>
<td>Hemic and Immune Systems</td>
</tr>
<tr>
<td>Skin Diseases</td>
<td>Integumentary System</td>
</tr>
<tr>
<td>Endocrine Diseases</td>
<td>Endocrine System</td>
</tr>
</tbody>
</table>
Identifying dependence relations

Results

has_agent

<table>
<thead>
<tr>
<th>Pathological Process</th>
<th>Pathogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial Infection</td>
<td>Bacteria</td>
</tr>
<tr>
<td>and Mycoses</td>
<td>Fungi</td>
</tr>
<tr>
<td>Virus Diseases</td>
<td>Viruses</td>
</tr>
<tr>
<td>Parasitic Diseases</td>
<td>Animals (+)</td>
</tr>
</tbody>
</table>
Identifying statistical relations

- Aggregation at the level of top-level categories

Viral meningitis (C02, C10)

(C02, A08) and (C10, A08)

Meninges (A08)
Identifying statistical relations

- **Contingency table**

<table>
<thead>
<tr>
<th>Indexed with term A</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>n_{AB}</td>
<td>n_{Ab}</td>
</tr>
<tr>
<td>No</td>
<td>n_{aB}</td>
<td>n_{ab}</td>
</tr>
</tbody>
</table>

Indexed with term B

- **Testing independence**
 - G^2 test (likelihood ratio test)
Identifying statistical relations Results

◆ Quantitative results
 ● 25,376 pairs of co-occurring descriptors
 ● All but 68 of these statistically significant (G^2 test)
 ● 7,896 pairs with frequency of co-occurrence ≥ 10
 ● 6,525 between diseases and other categories
Identifying statistical relations

Results

<table>
<thead>
<tr>
<th>Category</th>
<th>C01</th>
<th>C02</th>
<th>C03</th>
<th>C04</th>
<th>C05</th>
<th>C06</th>
<th>C07</th>
<th>C08</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 disease top-level categories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Regions</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>6.75</td>
<td>1.00</td>
<td>3.60</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Musculoskeletal System</td>
<td>1.50</td>
<td>0.00</td>
<td>0.00</td>
<td>6.17</td>
<td>52.08</td>
<td>0.00</td>
<td>2.58</td>
<td>1.75</td>
</tr>
<tr>
<td>Digestive System</td>
<td>1.50</td>
<td>1.50</td>
<td>0.00</td>
<td>18.83</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>0.17</td>
</tr>
<tr>
<td>Respiratory System</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
<td>3.58</td>
<td>0.25</td>
<td>1.33</td>
<td>0.00</td>
<td>21.25</td>
</tr>
<tr>
<td>Urogenital System</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>9.08</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Endocrine System</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cardiovascular System</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>5.17</td>
<td>0.00</td>
<td>2.50</td>
<td>0.00</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Note: The table above shows statistical relations for different categories. The highlighted cell (A03, Digestive System) has a value of 45.75.
Qualitative results (1)

- Generally one top-level category of the *Anatomy* and *Organisms* trees accounting for the highest frequency of co-occurrence for a given disease
 - *Cardiovascular Diseases* \rightarrow *Cardiovascular System*

- Exceptions
 - *Neoplasms* [C04]
 - *Congenital, Hereditary, and Neonatal Diseases and Abnormalities* [C16]
 - *Endocrine Diseases* [C19]
 - *Immunologic Diseases* [C20]
Identifying statistical relations Results

◆ Qualitative results (2)

 ● Most Anatomy and Organisms categories are preferentially associated with one disease category
 - Cardiovascular System \rightarrow Cardiovascular Diseases

 ● Categories other than Anatomy and Organisms tend not to be associated with one particular disease category (contingent rather than dependent relations)
 - Pathological Conditions, Signs and Symptoms [C23]
 - Amino Acids, Peptides, and Proteins [D12]
 - Diagnosis [E01]
 - Therapeutics [E02]
 - Surgical Procedures, Operative [E04]
Discussion
Applications

◆ To semantic mining
 ● Formal ontological analysis of relations provides a useful framework for elucidating statistical associations

◆ To terminology creation and maintenance
 ● Most terminologies do not represent trans-ontological relations explicitly
 ● Concepts in dependence relation should not be modified independently of each other
Summary

- We have studied statistical associations between MeSH terms co-occurring in MEDLINE citations.

- We have shown that the ontological relation of dependence is generally corroborated by a strong, systematic statistical association.

- These techniques:
 - Provide a framework for semantic mining of diseases
 - Can help maintain terminologies
Non-lexical Approaches to Identifying Associative Relations in the Gene Ontology
Acknowledgments

- **Marc Aubry**
 UMR 6061 CNRS, Rennes, France

- **Anita Burgun**
 University of Rennes, France
Gene Ontology

- Annotate gene products
- Coverage
 - Molecular functions
 - Cellular components
 - Biological processes
- Explicit relations to other terms within the same hierarchy
- No (explicit) relations
 - To terms across hierarchies
 - To concepts from other biological ontologies
Gene Ontology

Molecular functions

Cellular components

Biological processes

BP: metal ion transport
MF: metal ion transporter activity
Motivation

◆ Richer ontology
 ● Beyond hierarchies
◆ Easier to maintain
 ● Explicit dependence relations
◆ More consistent annotations
 ● Quality assurance
 ● Assisted curation
Related work

- **Ontologizing GO**
 - GONG

- **Identifying relations among GO terms across hierarchies**
 - Lexical approach
 - Non-lexical approaches

- **Identifying relations between GO terms and OBO terms**
 - ChEBI

- **Representing relations among GO terms and between GO terms and OBO terms**
 - Obol

- **See also:** [Bada & al., 2004], [Kumar & al., 2004], [Dolan & al., 2005]

[Ogren & al., PSB 2004-2005]
[Bodenreider & al., PSB 2005]
[Burgun & al., SMBM 2005]
[Mungall, CFG 2005]
GO and annotation databases

5 model organisms
- FlyBase
- GOA-Human
- MGI
- SGD
- WormBase

<table>
<thead>
<tr>
<th>Gene</th>
<th>GO ID</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brca1</td>
<td>GO:0000793</td>
<td>IDA</td>
</tr>
<tr>
<td>Brca1</td>
<td>GO:0003684</td>
<td>IDA</td>
</tr>
<tr>
<td>Brca1</td>
<td>GO:0003723</td>
<td>ISS</td>
</tr>
<tr>
<td>Brca1</td>
<td>GO:0004553</td>
<td>ISS</td>
</tr>
<tr>
<td>Brca1</td>
<td>GO:0005515</td>
<td>ISS, TAS</td>
</tr>
<tr>
<td>Brca1</td>
<td>GO:0005622</td>
<td>IDA</td>
</tr>
<tr>
<td>Brca1</td>
<td>GO:0005634</td>
<td>IDA, ISS</td>
</tr>
<tr>
<td>Brca1</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

270,000 gene-term associations
Three non-lexical approaches

All based on annotation databases

1. Similarity in the vector space model
2. Statistical analysis of co-occurring GO terms
3. Association rule mining
1. Similarity in the vector space model

GO terms

Genes

Annotation database

- Genes: g₁, g₂, …, gₙ
- GO terms: t₁, t₂, …, tₙ

The diagram illustrates the relationship between genes and GO terms, with the annotation database serving as a bridge between the two.
1. **Similarity in the vector space model**

- **Genes**
 - g_1, g_2, ..., g_n
 - t_1, t_2, ..., t_n

- **GO terms**
 - t_1, t_2, ..., t_n

Similarity matrix

$$\text{Sim}(t_i, t_j) = \langle t_i, t_j \rangle$$
Analysis of co-occurring GO terms

GO terms

Genes

Annotation database

t_2-t_7	1
t_2-t_9	1
t_7-t_9	2
...	

t_5	1
t_7	2
t_9	2
...	
Analysis of co-occurring GO terms

- Statistical analysis: test independence
 - Likelihood ratio test (G²)
 - Chi-square test (Pearson’s χ²)

- Example from GOA (22,720 annotations)
 - GO:0006955 [BP] Freq. = 588
 - GO:0008009 [MF] Freq. = 53

\[
\text{Co-oc.} = 46
\]

<table>
<thead>
<tr>
<th>GO:0008009 immune response</th>
<th>present</th>
<th>absent</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0006955 chemokine activity</td>
<td>present</td>
<td>46</td>
<td>542</td>
</tr>
<tr>
<td></td>
<td>absent</td>
<td>7</td>
<td>21,583</td>
</tr>
<tr>
<td>total</td>
<td>53</td>
<td>22,125</td>
<td>22,720</td>
</tr>
</tbody>
</table>

\[G^2 = 298.7\]
\[p < 0.000\]
Association rule mining

GO terms

<table>
<thead>
<tr>
<th>Genes</th>
<th>t₁</th>
<th>t₂</th>
<th>...</th>
<th>tₙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>g₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gₙ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annotation database

apriori

- Rules: t₁ => t₂
- Confidence: > .9
- Support: .05

transaction
Examples of associations

<table>
<thead>
<tr>
<th>Association</th>
<th>VSM</th>
<th>COC</th>
<th>ARM</th>
<th>LEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF: potassium channel activity [GO:0005267]</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BP: potassium ion transport [GO:0006813]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF: chemokine activity [GO:0008009]</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BP: immune response [GO:0006955]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC: hemoglobin complex [GO:0005833]</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP: oxygen transport [GO:0015671]</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF: taste receptor activity [GO:0008527]</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BP: perception of taste [GO:0050909]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF: metal ion transporter activity [GO:0046873]</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP: metal ion transport [GO:0030001]</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC: transport vesicle [GO:0030133]</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BP: transport [GO:0006810]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC: gap junction [GO:0005921]</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP: cell communication [GO:0007154]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Associations identified

<table>
<thead>
<tr>
<th></th>
<th>VSM</th>
<th>COC</th>
<th>ARM</th>
<th>LEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF-CC</td>
<td>499</td>
<td>893</td>
<td>362</td>
<td>917</td>
</tr>
<tr>
<td>MF-BP</td>
<td>3057</td>
<td>1628</td>
<td>577</td>
<td>2523</td>
</tr>
<tr>
<td>CC-BP</td>
<td>760</td>
<td>1047</td>
<td>329</td>
<td>2053</td>
</tr>
<tr>
<td>Total</td>
<td>4316</td>
<td>3568</td>
<td>1268</td>
<td>5493</td>
</tr>
</tbody>
</table>

7665 by at least one approach
<table>
<thead>
<tr>
<th></th>
<th>VSM</th>
<th>COC</th>
<th>ARM</th>
<th>LEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF-CC</td>
<td>499</td>
<td>893</td>
<td>362</td>
<td>917</td>
</tr>
<tr>
<td>MF-BP</td>
<td>3057</td>
<td>1628</td>
<td>577</td>
<td>2523</td>
</tr>
<tr>
<td>CC-BP</td>
<td>760</td>
<td>1047</td>
<td>329</td>
<td>2053</td>
</tr>
<tr>
<td>Total</td>
<td>4316</td>
<td>3568</td>
<td>1268</td>
<td>5493</td>
</tr>
</tbody>
</table>

MF: ice binding
BP: response to freezing
Associations identified

<table>
<thead>
<tr>
<th></th>
<th>VSM</th>
<th>COC</th>
<th>ARM</th>
<th>LEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF-CC</td>
<td>499</td>
<td>893</td>
<td>362</td>
<td>917</td>
</tr>
<tr>
<td>MF-BP</td>
<td>3057</td>
<td>1628</td>
<td>577</td>
<td>2523</td>
</tr>
<tr>
<td>CC-BP</td>
<td>760</td>
<td>1047</td>
<td>329</td>
<td>2053</td>
</tr>
<tr>
<td>Total</td>
<td>4316</td>
<td>3568</td>
<td>1268</td>
<td>5493</td>
</tr>
</tbody>
</table>

MF: chromatin binding

CC: nuclear chromatin
Associations identified

<table>
<thead>
<tr>
<th></th>
<th>VSM</th>
<th>COC</th>
<th>ARM</th>
<th>LEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF-CC</td>
<td>499</td>
<td>893</td>
<td>362</td>
<td>917</td>
</tr>
<tr>
<td>MF-BP</td>
<td>3057</td>
<td>1628</td>
<td>577</td>
<td>2523</td>
</tr>
<tr>
<td>CC-BP</td>
<td>760</td>
<td>1047</td>
<td>329</td>
<td>2053</td>
</tr>
<tr>
<td>Total</td>
<td>4316</td>
<td>3568</td>
<td>1268</td>
<td>5493</td>
</tr>
</tbody>
</table>

MF: carboxypeptidase A activity
BP: peptolysis and peptidolysis
Limited overlap among approaches

- Lexical vs. non-lexical
- Among non-lexical

![Diagram showing overlaps among VSM, COC, ARM with numbers indicating overlap counts.](image)
Linking the Gene Ontology to other biological ontologies
Acknowledgments

◆ Anita Burgun

University of

Rennes, France
Related domains

- Organisms: cytosolic ribosome (sensu Eukaryota)
- Cell types: T-cell activation
- Physical entities:
 - Gross anatomy: brain development
 - Molecules: transferrin receptor activity
- Functions:
 - Organism functions: visual perception
 - Cell functions: T-cell activation
- Pathology: regulation of blood pressure
GO and other domains

<table>
<thead>
<tr>
<th>Physical entity</th>
<th>Function</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism</td>
<td>Gross anatomy</td>
<td>Organism processes</td>
</tr>
<tr>
<td>Cell</td>
<td>Cellular components</td>
<td>Cellular processes</td>
</tr>
<tr>
<td>Molecule</td>
<td>Molecules</td>
<td>Molecular processes</td>
</tr>
</tbody>
</table>

[adapted from B. Smith]
GO and other domains (revisited)

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Physical whole</th>
<th>Physical part</th>
<th>Function</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism</td>
<td>Organism components</td>
<td>Organism functions</td>
<td>Organism processes</td>
<td></td>
</tr>
<tr>
<td>Cell</td>
<td>Cellular components</td>
<td>Cellular functions</td>
<td>Cellular processes</td>
<td></td>
</tr>
<tr>
<td>Molecule</td>
<td>Molecular components</td>
<td>Molecular functions</td>
<td>Molecular processes</td>
<td></td>
</tr>
</tbody>
</table>

[adapted from B. Smith]
<table>
<thead>
<tr>
<th>Domain</th>
<th>Prefix</th>
<th>Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell type</td>
<td>CL</td>
<td>cell.obo</td>
</tr>
<tr>
<td>Chemical entities of biological interest</td>
<td>CHEBI</td>
<td>ontology.obo</td>
</tr>
<tr>
<td>Mus adult gross anatomy</td>
<td>MA</td>
<td>MA.ontology</td>
</tr>
<tr>
<td>Plant anatomy</td>
<td>PO</td>
<td>anatomy.ontology and anatomy.definition</td>
</tr>
<tr>
<td>NCBI organismal classification</td>
<td>taxon</td>
<td>taxonomy.dat</td>
</tr>
<tr>
<td>Human disease</td>
<td>DOID</td>
<td>DO 08 18 03.txt</td>
</tr>
<tr>
<td>Mouse pathology</td>
<td>MPATH</td>
<td>mouse pathology.obo</td>
</tr>
<tr>
<td>PATO</td>
<td>PATO</td>
<td>attribute and value.obo</td>
</tr>
<tr>
<td>Physical-chemical methods and properties</td>
<td>FIX</td>
<td>fix.obo</td>
</tr>
<tr>
<td>Physico-chemical process</td>
<td>REX</td>
<td>rex.obo</td>
</tr>
</tbody>
</table>
GO and other domains (revisited)

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Physical whole</th>
<th>Physical part</th>
<th>Function</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism</td>
<td>Organism components</td>
<td>Organism functions</td>
<td>Organism processes</td>
<td></td>
</tr>
<tr>
<td>Cell</td>
<td>Cellular components</td>
<td>Cellular functions</td>
<td>Cellular processes</td>
<td></td>
</tr>
<tr>
<td>Molecule</td>
<td>Molecular components</td>
<td>Molecular functions</td>
<td>Molecular processes</td>
<td></td>
</tr>
</tbody>
</table>

[adapted from B. Smith]
Integrating biological ontologies

- Organism
- Biological processes
- Cellular components
- Other OBO ontologies
- Molecule
- Molecular functions
- Cell
Linking GO to ChEBI
ChEBI

- Member of the OBO family
- Ontology of Chemical Entities of Biological Interest
 - Atom
 - Molecule
 - Ion
 - Radical
- 10,516 entities
 - 27,097 terms

[Dec. 22, 2004]
Methods

◆ Every ChEBI term searched in every GO term
◆ Maximize precision
 ● Ignored ChEBI terms of 3 characters or less
 ● Proper substring
◆ Maximize recall
 ● Case insensitive matches
 ● Normalized ChEBI names
 (generated singular forms from plurals)
Examples

◆ **iron**

- **BP** iron ion transport [GO:0006826]
- **MF** iron superoxide dismutase activity [GO:0008382]
- **CC** vanadium-iron nitrogenase complex [GO:0016613]

◆ **uronic acid**

- **BP** uronic acid metabolism [GO:0006063]
- **MF** uronic acid transporter activity [GO:0015133]

◆ **carbon**

- **BP** response to carbon dioxide [GO:0010037]
- **MF** carbon-carbon lyase activity [GO:0016830]
Quantitative results

- 2,700 ChEBI entities (27%) identified in some GO term
- 9,431 GO terms (55%) include some ChEBI entity in their names
Generalization

Cell types

Leydic cell tumor

cerebellar aplasia

Mouse Pathology

iron deposition

cell membrane viscosity

enzymatic reaction

CC

MF

BP

CHEBI

REX

FIX
Conclusions
Conclusions (1)

- Links across OBO ontologies need to be made explicit
 - Between GO terms across GO hierarchies
 - Between GO terms and OBO terms
 - Between terms across OBO ontologies

- Automatic approaches
 - Effective (GO-GO, GO-ChEBI)
 - At least to bootstrap the process
 - Needs to be refined
Conclusions (2)

◆ Affordable relations
 ● Computer-intensive, not labor-intensive

◆ Methods must be combined
 ● Cross-validation
 ● Redundancy as a surrogate for reliability
 ● Relations identified specifically by one approach
 - False positives
 - Specific strength of a particular method

◆ Requires (some) manual curation
 ● Biologists must be involved
References

Medical Ontology Research

Contact: olivier@nlm.nih.gov
Web: mor.nlm.nih.gov

Olivier Bodenreider
Lister Hill National Center for Biomedical Communications
Bethesda, Maryland - USA