Biomedical Knowledge Repository and Semantic Medline

Olivier Bodenreider, M.D., Ph.D.
Thomas C. Rindflesch, Ph.D.
Context

◆ Provide biomedical information to health care professionals and consumers
 ● Exploit NLM resources
 ● Maintain NLM’s cutting edge

◆ Proposal overview
 ● *Advanced Library Services*
 ● *Biomedical Knowledge Repository*

◆ Pilot projects
Why additional services?

- Biomedical information is growing at an increasingly faster pace
 - High-throughput approach to knowledge processing
- Information retrieval is the starting point, not the end of the journey for the researcher
 - Towards “computable” knowledge
- Integration between literature and other resources is insufficient
 - Adequate for navigation purposes
 - Insufficient for knowledge processing
What additional services?

- **Refined information retrieval**
 - Indexing on relations in addition to concepts
 - *Find articles asserting that IL-13 inhibits COX-2*

- **Multi-document summarization**
 - Extract and visualize facts from the literature
 - *Summarize the top 300 papers on panic disorder*

- **Question answering**
 - Clinical and biological questions
 - *What drugs interact with imipramine?*

- **Knowledge discovery**
 - Reasoning with facts from heterogeneous resources
 - *From MEDLINE and UMLS together*
Normalized and integrated knowledge

- **Normalized knowledge**
 - Common format
 - Common identification mechanism

- **Integrated knowledge**
 - Single repository
 - Seamless environment
 - *Phenotype and genotype information together*

Biomedical Knowledge Repository
Sources of knowledge

◆ Biomedical literature
 - Predications extracted from MEDLINE abstracts and full-text publicly available articles using text mining techniques
 - Other corpora (e.g., ClinicalTrials.gov)

◆ Terminological knowledge
 - UMLS

◆ Structured knowledge bases
 - NCBI resources (e.g., Entrez Gene)
 - Functional annotations from model organism databases
 - ...

◆ Contributed knowledge
 - The repository is open to collaborators outside NLM
Formalism Triples

- Facts
- Assertions
- Relations
- Semantic predications
- RDF triples

```
relationship
concept1 --
          |  treats
Imipramine -- Panic Disorder
          |  has_associated_disease
APP       -- Alzheimer disease
```
Annotated knowledge

◆ Provenance information
 ● Source (e.g., PMID)
 ● Extraction mechanism
 ● Timestamp

◆ Frequency information
 ● Redundancy

◆ Collaborative annotation
 ● “Was this information useful?”
 ● Context of use/usefulness
Semantic Web perspective

- Common format for knowledge
 - Resource Description Format (RDF)
- Common identification scheme
 - Unified Resource Identifier (URI)
- Standard tools
 - RDF browsers
 - RDF “reasoners”
- High level of interest for biomedicine in the SW community
 - Health Care and Life Sciences Interest Group
Advanced Library Services Summary

Biomedical Knowledge Repository

Source selection (PubMed, annotations)

- Document Summarization
- Question Answering
- Knowledge Discovery
- Information Retrieval

MEDLINE
- CT.gov
- UMLS
- Entrez Gene
- GO

Biomedical Literature
Terminological Knowledge
Structured Knowl. Bases
Contributed Knowledge
Advanced Library Services Pilot projects

Source selection
(PubMed, annotations)
MEDLINE
CT.gov
UMLS

 Terminological Knowledge

 Biomedical Literature

 Structured Knowl. Bases

 Contributed Knowledge

SemRep

XSLT

Biomedical Knowledge Repository

Document Summarization

Question Answering

Knowledge Discovery

Information Retrieval

Populating the repository

Exploiting the repository
Pilot #1

Populating and exploiting the Biomedical Knowledge Repository

Converting Entrez Gene into RDF

With Satya Sahoo (U. Georgia) and Kelly Zeng (LHC)
Lister Hill National Center for Biomedical Communications

Entrez Gene

GeneID: 351 Primary source: HGNC 620

Summary

Official Symbol: APP and Name: amyloid beta (A4) precursor protein (peptidase nexin-II, Alzheimer disease) provided by HUGO Gene Nomenclature Committee
See related: HPRD:00100, MIM:104760
Gene type: protein coding
Gene name: APP
Gene description: amyloid beta (A4) precursor protein (peptidase nexin-II, Alzheimer disease)

General protein information

Names: amyloid beta A4 protein protease nexin-II; A4 amyloid protein; amyloid-beta protein; beta-amloid peptide; cerebral vascular amyloid peptide; amyloid beta (A4) precursor protein (protease nexin-II, Alzheimer disease)
Overview

XML (file) \(\xrightarrow{\text{JAPX}}\) RDF (file) \(\xrightarrow{\text{Jena}}\) RDF (Oracle)

- 124 element tags
- 2M genes
- 106 properties
- 410M triples

XSLT Stylesheet

Names \(\xrightarrow{\text{has_name}}\)
APP (GeneID: 351)

- **has_protein_name**: amyloid beta A4 protein

- **Names**: amyloid beta A4 protein
 - protease nexin-II; A4 amyloid protein; amyloid-beta protein; beta-amyloid peptide; cerebral vascular amyloid peptide; amyloid beta (A4) precursor protein (protease nexin-II, Alzheimer disease)
RDF triple Gene property

eg:has_protein_reference_name_E

subject predicate object

APP (geneid-351) amyloid beta A4 protein
RDF graph Connecting several genes

- MAPT → Parkinson disease
- MAPT → Pick disease
- PARK1 → Parkinson disease
- TBP → Parkinson disease
- TBP → Spinocerebellar ataxia

(has_associated_disease)
Future work

- Transform additional resources into RDF
 - UMLS Metathesaurus
 - Other NCBI databases
 - Drug knowledge bases
 - …
- Integrate resources
 - Query across resources

Diagram:
- Alzheimer disease
- Parkinson disease
- Neurodegenerative diseases
- APP
 - has_associated_disease
- PARK1
 - has_associated_disease
From *glycosyltransferase* to *congenital muscular dystrophy*

GO:0008375

has_molecular_function

GO:0008375

has_ass ociated_phenotype

MIM:608840

Muscular dystrophy, congenital, type 1D

EG:9215

LARGE

GO:0016758

acetylglucosaminyl-transferase

GO:0016757

isa

GO:0008194

has_molecular_function

MIM:608840

Muscular dystrophy, congenital, type 1D
Pilot #2

Populating and exploiting the Biomedical Knowledge Repository

Semantic Medline: Multi-document summarization and visualization

With Marcelo Fiszman, M.D., Ph.D. and Halil Kilicoglu, M.S.
Advanced Library Services Pilot projects

Source selection
(PubMed, annotations)

MEDLINE
CT.gov
UMLS
Entrez
Gene
GO

Biomedical Literature
Terminological Knowledge
Structured Knowl. Bases
Contributed Knowledge

SemRep

Biomedical Knowledge Repository

Document Summarization
Question Answering
Knowledge Discovery
Information Retrieval

Populating the repository Exploiting the repository
Managing retrieval results

Information retrieval

Semantic Medline

500 citations

Network of relations
Managing retrieval results

NCBI

PubMed

All Databases PubMed Nucleotide Protein Genome Structure
Search PubMed for HIV

Network diagram showing connections between documents and data sets.
Seamless integration of technologies

- Information retrieval
 - PubMed - MEDLINE
 - Essie - ClinicalTrials.gov

- Natural language processing: **SemRep**
 - Represent content of text with semantic predications

- Abstraction summarization
 - Informative: Overview of most salient information

- Visualization
 - Indicative: Links to source text and additional information
Semantic Medline Overview

Query ➔

Text ➔

PubMed Essie ➔

Medline ClinicalTrials.gov ➔

Semantic Predications ➔

SemRep ➔

UMLS ➔

Salient Semantic Predications ➔

Summarize ➔

Structured Biomedical Data ➔

Informative Graph ➔

Visualize ➔
Document selection

Query → PubMed → MEDLINE, ClinicalTrials.gov → "HIV" → UMLS, Structured Biomedical Data → Informative Graph

Semantic Predications → Salient Semantic Predications → Summarize → Visualize
Tat activities, which play a role in HIV disease development.

...increased risk of invasive pneumococcal infection observed in HIV-1 infection.
Semantic interpretation

- Text
- Semantic Predications
- Salient Semantic Predications
- Informative Graph
- PubMed
- Essie
- MEDLINE
- ClinicalTrials.gov
- SemRep
- Summarize
- Visualize
- Structured Biomedical Data
- UMLS
... Tat activities, which play a role in HIV disease development.

Tat genes associated_with HIV Infections

...increased risk of invasive pneumococcal infection observed in HIV-1 infection.

Pneumococcal Infections co-exists_with HIV Infections
Semantic predications

- tat genes associated_with HIV Infections
- tat genes causes Toxic effect
- Pneumococcal Infections co-exist_with HIV Infections
- HIV Infections associated_with Persons
- Disease co-exist_with HIV Infections

Query

Text

Semantic Predications

Salient Semantic Predications

Informative Graph
Summarization

- Query
- Text
 - PubMed
 - Essie
- Semantic Predications
 - SemRep
- Salient Semantic Predications
- Informative Graph
 - Summarize
 - Visualize
- Structured Biomedical Data
 - UMLS
 - MEDLINE
 - ClinicalTrials.gov
Abstraction summarization

- Specify a topic
- Retain predications on the topic
- Eliminate uninformative predications
- Retain most frequent predications
Salient semantic predications

- tat genes associated_with HIV Infections
- tat genes causes Toxic effect
- Pneumococcal Infections co-exist_with HIV Infections
- HIV Infections process_of Persons
- Disease co-exist_with HIV Infections
Visualization

Query ➔ PubMed, Essie ➔ Text

PubMed, Essie ➔ MEDLINE, ClinicalTrials.gov

Text ➔ Semantic Predications ➔ UMLS

Semantic Predications ➔ Summarize

Summarize ➔ Structured Biomedical Data

Informative Graph ➔ Visualize

Salient Semantic Predications ➔ Informative Graph

Visualize ➔ Semantic Predications

Informative Graph ➔ Text

Pharmacokinetics of once-daily tenofovir, emtricitabine, ritonavir and fosamprenavir in HIV-infected subjects. AB - HAART has decreased the incidence of AIDS and death among HIV-infected individuals dramatically. This approach often becomes cumbersome to patients, involving multiple drugs administered on varying schedules. We investigated the pharmacokinetics, efficacy, and tolerability of a once-daily regimen of fosamprenavir, tenofovir, emtricitabine and ritonavir in HIV-infected treatment-naive subjects. No clinically significant interaction between the drugs was noted, and the regimen showed good efficacy and tolerability over the course of 48 weeks.
Future work

- Process all of MEDLINE/PubMed
 - With SemRep
- Incrementally integrate structured knowledge sources
 - Entrez databases
 - UMLS
 - Genetics Home Reference
- Implementation
 - Efficiency
 - Large amount of data
Summary

◆ Deliver health information
 • Biomedical Knowledge Repository
 • Advanced Library Services

◆ Exploit
 • Current Library resources
 • Advanced information technology

◆ Support timely translation
 • Of biomedical research
 • Into improvements in patient care and public health
Acknowledgments

- Caroline Ahlers
- Mariana Dimitrov
- Marcelo Fiszman
- Halil Kilicoglu
- François-Michel Lang
- Lee Peters
- Anna Ripple
- Graciela Rosemblat
- Satya Sahoo
- Kelly Zeng