Leveraging RxNorm and drug classifications for analyzing prescription datasets

Olivier Bodenreider
Lister Hill National Center for Biomedical Communications
Bethesda, Maryland - USA
Disclaimer

The views and opinions expressed do not necessarily state or reflect those of the U.S. Government, and they may not be used for advertising or product endorsement purposes.
Outline

◆ Drug ontologies
 ● RxNorm
 ● Drug classification systems

◆ Use cases
 ● Comparing prescribed vs. defined daily dose
 ● Identifying potentially inappropriate medications for elderly patients
 ● Identifying potential risk in drug prescriptions during pregnancy
Drug ontologies
RxNorm

- Terminology integration system
 - Structured Product Labels, First DataBank, Micromedex, Multum, MeSH, SNOMED CT, NDF-RT, ATC, ...

- Scope
 - Drug names and codes
 - Drugs available on the U.S. market

- Developer: National Library of Medicine

- Publicly available*

- Monthly updates

- Size: > 10k ingredients; 19k clinical drugs

- Uses: e-prescription, information exchange, analytics

RxNorm Example

Azithromycin

- **Ingredient**
- **C. Drug Comp.** (Azithromycin 250 MG)
- **C. Drug Form** (Azithromycin Oral Tablet)
- **B. Drug Comp.** (Azithromycin 250 MG)
- **B. Drug Form** (Azithromycin Oral Tablet [Zithromax])
- **B. Pack** (Zithromax 250 MG Oral Tablet)
- **G. Pack** (6 (Azithromycin 250 MG Oral Tablet) Pack: Z-PAK)
Applications

◆ **RxNav**
 - Drug-centric browser
 - Links among drug entities (graph)
 - Links to other sources of information
 - Drug classes
 - Drug-drug interactions from DrugBank

◆ **RxClass**
 - Drug class-centric browser
 - NDF-RT, MeSH and ATC
 - All classes for a given drug
 - All drug members for a given class
 - Class-class similarity
Application Programming Interfaces (APIs)

◆ RxNorm
 ● Map drug names and codes to RxNorm
 ■ Including approximate matches and spelling suggestions
 ● Navigate among drug entities (e.g., brand to generic)

◆ RxClass
 ● Map drug class names and codes to classification systems
 ● Link between drug classes and their drug members
 ● Similarity between drug classes

◆ Usage
 ● 30,000 unique users per month
 ● 1B calls in 2015
RxNav

RxNav is a browser for several drug information sources, including RxNorm, RxTerms and NDF-RT. RxNav finds drugs in RxNorm from the names and codes in its constituent vocabularies.

Launch RxNav

http://rxnav.nlm.nih.gov/

DailyMed API in RxMix

Functionality of the DailyMed API has been added to RxMix. Included are functions to retrieve drug classes, manufacturer drug names, National Drug Codes (NDCs), packaging information and drug class members. See RxMix for more details including runnable examples.

Video Tutorials

RxMix

NDC Properties Function

A new function to retrieve National Drug Code (NDC) properties for an NDC, a Structured Product Label (SPL) or an RxNorm concept is now available. See getNDCProperties (SOAP) or /ndcproperties (REST).

NDC History Function

A function to retrieve National Drug Code (NDC) history for any RxNorm concept is now available. The function provides past versions of an NDC and any changes made to it.
Use case #1

Comparing prescribed vs. defined daily dose

[Bodenreider, AMIA, 2014]
Prescribed vs. defined daily dose

◆ **Dataset**
 - Surescripts feed
 - All prescriptions to ER patients
 - For 3 months in 2011 in a Bethesda hospital

◆ **Reference for defined daily dose: ATC**

◆ **Methods**
 - RxNorm clinical drug \rightarrow RxNorm ingredient \leftrightarrow ATC ingredient \rightarrow ATC defined daily dose \leftrightarrow prescribed daily dose
 - Restricted to systemic drugs (based on dose form)

◆ **Findings**
 - Confirmed feasibility
 - 25% of the prescriptions exactly match the ATC DDD
 - 50% of the prescriptions within 66-150% of the ATC DDD
 - 75% of the prescriptions within 50-200% of the ATC DDD
ATC/DDD Index

◆ Origin
 ● World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology (Norway)
 ● For drug utilization research / pharmaco-epidemiology
 ■ Not for clinical purposes

◆ Organization
 ● Drug classification on 4 levels
 ■ Anatomical
 ■ Therapeutic
 ■ Chemical
 ● Drugs (5th level)
 ● Daily dose
 ■ For a given route

J ANTIINFECTIVES FOR SYSTEMIC USE
J01 ANTIBACTERIALS FOR SYSTEMIC USE
J01C BETA-LACTAM ANTIBACTERIALS, PENICILLINS
J01CA Penicillins with extended spectrum

<table>
<thead>
<tr>
<th>ATC code</th>
<th>Name</th>
<th>DDD</th>
<th>U</th>
<th>Adm.R</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>J01CA04</td>
<td>amoxicillin</td>
<td>1 g</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 g</td>
<td>P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methods Overview

RxNorm
- Clinical drug
- Ingredient
- Dose Form

ATC/DDD Index
- ATC classes
 - L1
 - L2
 - L3
 - L4
- Level 5 drug
- Adm. Code
- Defined Daily Dose

Surescripts
- Clinical drug
- Total amount
- Duration
- Prescribed Daily Dose
Methods Example

RxNorm

Amoxicillin 500 MG Oral Capsule (308191)

Amoxicillin (723)

Oral Capsule

ATC/DDD Index

amoxicillin (J01CA04)

1 g

Surescripts

Amoxicillin 500 MG Oral Capsule (308191)

40 capsules

10 days

40 x 500 mg / 10 = 2 g

J ANTIINFECTIVES FOR SYSTEMIC USE
J01 ANTIBACTERIALS FOR SYSTEMIC USE
J01C BETA-LACTAM ANTIBACTERIALS, PENICILLINS
J01CA Penicillins with extended spectrum
Results Prescription classification

Frequency of drugs by level-1 ATC group in the Surescripts prescription dataset \(N=86,578 \)

- **ALIMENTARY TRACT AND METABOLISM (A)**
- **BLOOD AND BLOOD FORMING ORGANS (B)**
- **CARDIOVASCULAR SYSTEM (C)**
- **DERMATOLOGICALS (D)**
- **GENITO URINARY SYSTEM AND SEX HORMONES (G)**
- **SYSTEMIC HORMONAL PREP., EXCL. SEX HORMONES AND INSULINS (H)**
- **ANTIINFECTIVES FOR SYSTEMIC USE (J)**
- **ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS (L)**
- **MUSCULO-SKELETAL SYSTEM (M)**
- **NERVOUS SYSTEM (N)**
- **ANTIPARASITIC PRODUCTS, INSECTICIDES AND REPELLENTS (P)**
- **RESPIRATORY SYSTEM (R)**
- **SENSORY ORGANS (S)**
- **VARIOUS (V)**

Top prescribed drugs:
- **Atorvastatin**
- **Simvastatin**
- **Lisinopril**
- **Metoprolol**
- **Amlodipine**
- **Furosemide**
- **Atenolol**
- **Hydrochlorothiazide**
- **Zolpidem**
- **Sertraline**
- **Escitalopram**
- **Alprazolam**
- **Clonazepam**
- **Gabapentin**
- **Quetiapine**
- **Oxycodone**
- **Fluoxetine**
- **Duloxetine**
Deviations of the prescribed daily dose (PDD) in Surescripts from the defined daily dose (DDD) in ATC for 68,462 oral solid dose form prescriptions.

- 86.1% of the prescriptions are within 33%–300% of the ATC DDD
- 76.1% of the prescriptions are within 50%–200% of the ATC DDD
- 49.5% of the prescriptions are within 66%–150% of the ATC DDD
- 28.6% of the prescriptions exactly match the ATC DDD
- 10.4% < 33% of the ATC DDD
- 3.5% > 300% of the ATC DDD
Use case #2

Identifying potentially inappropriate medications for elderly patients
PIMs for elderly patients

◆ Dataset
 ● Medicare Part D
 ● 1M beneficiaries ≥ 65
 ● All prescriptions for one year (2009)

◆ Reference list of PIMs: Beers list

◆ Methods
 ● NDC → RxNorm clinical drug → ingredient ↔ Beers
 ● Restricted to systemic drugs (based on dose form)

◆ Findings
 ● 47% of all beneficiaries were prescribed at least 1 PIM
 ● Top PIMs: zolpidem (6.3%), nitrofurantoin (4.5%)
Use case #3

Identifying potential risk in drug prescriptions during pregnancy
Potential risk during pregnancy

◆ Dataset
 ● Large prescription dataset from private insurer (150M patients)
 ● 3.7M pregnant women; 19M prescriptions (2003-2014)
 ● OMOP clinical data model

◆ Reference list for risk during pregnancy: Briggs textbook

◆ Methods
 ● RxNorm clinical drug \rightarrow ingredient \leftrightarrow Briggs drug \rightarrow fetal risk
 ● Restricted to systemic drugs (based on dose form)

◆ Findings
 ● 41.2% compatible with pregnancy or probably compatible
 ● 55.6% potential risk
 ● 3.29% high risk or contraindicated
Challenges

◆ Obsolete identifiers
 ● Needed for analytics

◆ Reuse of identifiers
 ● NDCs (time-indexed)

◆ Insufficient coverage in ontologies
 ● International drugs
 ● Over-the-counter drugs

◆ Granularity of knowledge
 ● Ingredient-class vs. clinical drug-class

◆ Heterogeneity of drug classification
 ● Different use cases
Medical Ontology Research

Contact: olivier@nlm.nih.gov

Olivier Bodenreider
Lister Hill National Center for Biomedical Communications
Bethesda, Maryland - USA