Tying it all together

From terminology integration to annotation integration

Olivier Bodenreider
Lister Hill National Center
for Biomedical Communications
Bethesda, Maryland - USA

Biomedical Linked Annotation Hackathon 3
Tokyo, Japan
January 16, 2017
Disclaimer

The views and opinions expressed do not necessarily state or reflect those of the U.S. Government, and they may not be used for advertising or product endorsement purposes.
Outline

- Normalizing annotations
 - From a text span to a concept identifier
- Reconciling annotations
 - Crosswalk between identifiers for equivalent concepts across ontologies
- Aggregating annotations
 - Bridging across the granularity divide
- Tying it all together
 - Two examples
Normalizing annotations
Neurofibromatosis 2

Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.

Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.
Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.
Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.

D016518 - Neurofibromatosis 2
D025581 - Neurofibromin 2
Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.

#101000 - NEUROFIBROMATOSIS, TYPE II; NF2
*607379 - NEUROFIBROMIN 2; NF2
Issues in normalizing annotations

◆ Which reference to normalize against?
 ● Which individual ontology to use as the reference?
 ■ Sometimes dictated by the task
 ■ NCBO Ontology Recommender (coverage evaluation)
 ● UMLS vs. individual ontologies

◆ Fine-grained vs. coarse annotations
 ● Fine-grained annotations
 ■ Lossless
 ■ But will likely require aggregation
 ● Coarse annotations
 ■ Lossy (i.e., not useful outside a specific project
 ■ Unlikely to support linking to knowledge bases
Issues in normalizing annotations

◆ Missing annotations
 ● Controlled/reference terminologies vs. interface terminologies
 ■ “Missing” variants – most terminologies ignore variants on purpose
 ■ Lexical normalization / variant generation
 ● Leverage ontology integration systems (e.g., UMLS)
 ■ Benefit from synonyms (and variants) from all terminologies
 ■ Later restrict to a specific terminology
Issues in normalizing annotations

- **Exact vs. partial mappings**
 - Spans may be more specific than ontology terms
 - bilateral vestibular schwannomas → vestibular schwannomas
 - Controlled demodification supports partial mappings

- **Ambiguous terms**
 - Ontologies provide context for disambiguation
 (hierarchies, semantic categorization)

 ![Ontology Tree]

 - Neurofibromatosis 2 [disease]
 - NF2
 - Neurofibromin 2 [protein]
 - Neurofibromatosis 2 gene [gene]
Reconciling annotations
Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.

D016518 - Neurofibromatosis 2
D025581 - Neurofibromin 2
Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.

#101000 - NEUROFIBROMATOSIS, TYPE II; NF2
*607379 - NEUROFIBROMIN 2; NF2
Neurofibromatosis type 2 (NF2) is often not recognised as a distinct entity from peripheral neurofibromatosis. NF2 is a predominantly intracranial condition whose hallmark is bilateral vestibular schwannomas. NF2 results from a mutation in the gene named merlin, located on chromosome 22.

D016518 - Neurofibromatosis 2
#101000 - NEUROFIBROMATOSIS, TYPE II; NF2

D025581 - Neurofibromin 2
*607379 - NEUROFIBROMIN 2; NF2
Reconciling annotations UMLS

◆ **C0027832** - Neurofibromatosis 2
 - D016518 - Neurofibromatosis 2
 - #101000 - NEUROFIBROMATOSIS, TYPE II; NF2
 - (Type II neurofibromatosis, Bilateral acoustic neurofibromatosis, …)

◆ **C0254123** - Merlin
 - D025581 - Neurofibromin 2
 - *607379 - NEUROFIBROMIN 2; NF2
 - (Schwannomin, Neurofibromin 2, …)
UMLS Metathesaurus

- Synonymous terms clustered into a concept
- Preferred term
- Unique identifier (CUI)

<table>
<thead>
<tr>
<th>Term</th>
<th>MeSH</th>
<th>D000224</th>
<th>MedDRA</th>
<th>10036696</th>
<th>ICD-10</th>
<th>E27.1</th>
<th>SNOMED CT</th>
<th>363732003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addison Disease</td>
<td>MeSH</td>
<td>D000224</td>
<td>MedDRA</td>
<td>10036696</td>
<td>ICD-10</td>
<td>E27.1</td>
<td>SNOMED CT</td>
<td>363732003</td>
</tr>
<tr>
<td>Primary hypoadrenalism</td>
<td>MeSH</td>
<td>D000224</td>
<td>MedDRA</td>
<td>10036696</td>
<td>ICD-10</td>
<td>E27.1</td>
<td>SNOMED CT</td>
<td>363732003</td>
</tr>
<tr>
<td>Primary adrenocortical insufficiency</td>
<td>MeSH</td>
<td>D000224</td>
<td>MedDRA</td>
<td>10036696</td>
<td>ICD-10</td>
<td>E27.1</td>
<td>SNOMED CT</td>
<td>363732003</td>
</tr>
<tr>
<td>Addison's disease (disorder)</td>
<td>MeSH</td>
<td>D000224</td>
<td>MedDRA</td>
<td>10036696</td>
<td>ICD-10</td>
<td>E27.1</td>
<td>SNOMED CT</td>
<td>363732003</td>
</tr>
</tbody>
</table>

C0001403

Addison's disease
Integrating subdomains

Clinical repositories

SNOMED CT

OMIM

MeSH

Biomedical literature

Genetic knowledge bases

Genome annotations

Other subdomains

…

Model organisms

FMA

GO

Anatomy

NCBI Taxonomy

UMLS
Integrating subdomains

- Clinical repositories
- Genetic knowledge bases
- Biomedical literature
- Genome annotations
- Anatomy
- Model organisms
- Other subdomains
Trans-namespace integration

Addison's disease (363732003)

Other subdomains

SNOMED CT

OMIM

Biomedical literature

Addison Disease (D000224)

Genetic knowledge bases

Genome annotations

Model organisms

NCBI Taxonomy

FMA

GO

Anatomy

UMLS C0001403

Clinical repositories

Biomedical literature

Addison Disease (D000224)

Genetic knowledge bases

Genome annotations

Model organisms

NCBI Taxonomy

FMA

GO

Anatomy

UMLS C0001403

Clinical repositories
Source Vocabularies

- 150 families of source vocabularies
 - Not counting translations
- Broad coverage of biomedicine
 - 9.9M names (normalized)
 - ~3.2M concepts
 - > 10M relations
- Mappings are curated by the Metathesaurus editors
Other ontology integration systems

◆ General
 ● NCBO BioPortal
 ▪ Over 500 ontologies integrated
 ▪ Mappings across ontologies are not curated
 ● EBI Ontology Lookup Service
 ▪ OBO ontologies

◆ Domain-specific
 ● Entrez Gene
 ▪ Integrates names and identifiers for genes
 ● […]
Synonymy vs. mapping

◆ Synonymy
 ● Terms grouped under the same concept
 ● Best option possible for integrating annotations

◆ Point-to-point mappings across sources
 ● Developed for a given purpose
 ● Generally meant to be used in one direction
 ● May reflect synonymy or small semantic distance between terms
 ● Might be useful for integrating annotations
Issues in reconciling annotations

◆ What is synonymy in terminologies?
 ● Splitting vs. lumping
 ▪ “Concept orientation” is in the eye of the beholder
 ● MeSH descriptors vs. UMLS concepts

◆ Provenance of the annotation (metadata)
 ● Distinguish between normalizing and reconciling annotations
 ● Keep the original identifier the annotation was made to
 ▪ Including specific version of the ontology and NER system
 ● To enable alternative reconciliation if needed
Aggregating annotations
Reconciliation vs. Aggregation

◆ Reconciliation
 ● Recognize when different term identifiers refer to the same entity (or concept)
 ● Leveraging synonymy and mapping relations

[D016518 - Neurofibromatosis 2]
[#101000 - NEUROFIBROMATOSIS, TYPE II; NF2]

◆ Aggregation
 ● Bridge across various levels of granularity
 ● Leveraging hierarchical relations
 ● From fine-grained annotations to higher-level annotations
 ▪ Neurofibromatosis 1, Neurofibromatosis 2 → Neurofibromatoses
Neurofibromatosis 2
(Type II neurofibromatosis, Bilateral acoustic neurofibromatosis)

NF2
(Neurofibromin 2 gene)

Merlin
(Schwannomin, Neurofibromin 2)

Amino Acid, Peptide, or Protein

Biologically Active Substance

Gene or Genome

Tumor suppressor genes

Tumor suppressor proteins

Neoplastic Process

Benign neoplasms of cranial nerves

UMLS Metathesaurus
(Concepts and relations)
Aggregation

- Mostly supported by hierarchical relations in ontologies
 - Definitional knowledge (universally true)
- Required for bridging the granularity mismatch when integrating annotations
 - Between annotations made at different levels of granularity
 - Applicable to various sources
 - Between literature annotations
 - Between literature annotations and knowledge bases
Aggregation and linked data

◆ Aggregation is key to linking annotations
 ● Hierarchical links among annotations

◆ Annotations made in reference to ontologies and these ontologies must be integrated together to support knowledge discovery
 ● Linked Data provides a platform
 ● Ontologies have been a core component of the Semantic Web historically
Semantic Web “layer cake”
Issues in aggregating annotations

- Hierarchical relations vs. relations used to organize concepts in trees
 - Hierarchical relations
 - Partial order relations
 - Support subsumption inference (subClassOf)
 - Relations used to organize concepts in trees
 - Not always subClassOf relations
 - LLT to PT in MedDRA (synonymy, lexical variation, subclass)
 - MeSH hierarchy (“aboutness” for retrieval purposes)
 - […]

- Hierarchical relations in the UMLS Metathesaurus
 - Not curated, possibly conflicting
Issues in aggregating annotations

◆ Semantic distance
- Can be used to assess when annotations can be aggregated
- Edge counting is a poor surrogate for semantic distance
 - Wide variation in hierarchical depth among ontologies
- Information content-based approaches require frequencies of occurrence
- Large body of literature on the subject
Tying it all together

Example #1

Reasoning with annotations from Entrez Gene
Bridging the granularity mismatch
Example from Entrez Gene annotations

◆ A researcher is interested in glycosylation and its implications for one disorder: congenital muscular dystrophy.

Link between glycosyltransferase activity and congenital muscular dystrophy?

[Sahoo, Medinfo 2007]
Lister Hill National Center for Biomedical Communications

GeneID: 9215

Phenotypes:
Muscular dystrophy, congenital, type 1D
MIM: 608840

has_associated_disease
Congenital muscular dystrophy, type 1D
Using SPARQL to test a hypothesis

Find all the genes annotated with the GO molecular function *glycosyltransferase* or any of its descendants and associated with any form of *congenital muscular dystrophy*.
Results

Instantiated graph

- acetylglucosaminyl-transferase (GO:0008375)
- is_a
- glycosyltransferase (GO:0016757)
- has molecular function
- LARGE
- has assoc. phenotype
- EG:9215
- has textual description
- Muscular dystrophy, congenital, type 1D

MIM:608840
From glycosyltransferase to congenital muscular dystrophy

Muscular dystrophy, congenital, type 1D

MIM:608840

GO:0008375

has_molecular_function

has_associated_phenotype

EG:9215

LARGE

GO:0016757

isa

GO:0008194

acetylglucosaminyl-transferase

GO:0016758

acetylglucosaminyl-transferase

GO:0008375
Tying it all together

Example #2

Organizing annotations from SemMedDB
SemRep

- Relation extraction system (semantic predications)
- Part of the Semantic Knowledge Representation project at NLM
 - Tom Rindflesch
- Applied to the biomedical literature (MEDLINE citations)
- Supports the automatic summarization system, Semantic Medline
... Exemestane after non-steroidal aromatase inhibitor for post-menopausal women with advanced breast cancer

Unified Medical Language System
Predication Database: SemMedDB

- SemRep predications extracted
 - From titles and abstracts in MEDLINE
 - 80 million predications
 - Normalized to UMLS

- Made available to the research community
 - MySQL database
 - RDF triples
Status

◆ Publicly available
- Semantic Medline graphical interface
- SemMedDB predication database (download)

◆ Experimental integration with UMLS relations
- UMLS in RDF not yet available for download
- Not available as a SPARQL endpoint
 - Licensing issues
 - Lack of access control in RDF stores
Movement Disorders

Parkinson Disease

- Dyskinetic syndrome
- Bilateral breast cancer
- Dementia
- Depressive disorder
- Anhedonia

Neurodegenerative Diseases

- Deep brain Stimulation
- Gene Therapy
- Entire subthalamic nucleus
- Brain

Treatment of Parkinson’s disease

- pramipexol
- Dopamine
- Levodopa
- rasagiline
- entacapone
- Dopamin Agonists

Treatment of Parkinson’s disease

- Procedure

Depressive disorder occurs in Parkinson Disease

Deep brain Stimulation treats Parkinson Disease

entacapone treats Parkinson Disease

Dopamine treats Parkinson Disease

Levodopa treats Parkinson Disease

rasagiline treats Parkinson Disease

Dopamin Agonists treats Parkinson Disease

Gene Therapy treats Parkinson Disease

Entire subthalamic nucleus treats Parkinson Disease

Brain treats Parkinson Disease

SemRep output
Treatment of Parkinson’s disease
Summary

◆ Ontologies
 - Are key to annotation normalization, reconciliation and aggregation
 - Are a core component of the Semantic Web, including Linked Data

◆ Ontology integration systems
 - Can be leveraged to support annotation integration

◆ Annotation integration in action
 - Support for hypothesis generation and knowledge discovery
Medical Ontology Research

Contact: olivier@nlm.nih.gov
Web: https://mor.nlm.nih.gov

Olivier Bodenreider
Lister Hill National Center for Biomedical Communications
Bethesda, Maryland - USA