Anatomical Ontologies
How of them many do we need?

Olivier Bodenreider
National Institutes of Health, Bethesda, Maryland, USA
Disclaimer

The views and opinions expressed do not necessarily state or reflect those of the U.S. Government, and they may not be used for advertising or product endorsement purposes.
Anatomical ontologies
Coordinated evolution of ontologies

<table>
<thead>
<tr>
<th>RELATION TO TIME</th>
<th>CONTINUANT</th>
<th>OCCURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRANULARITY</td>
<td></td>
<td>Biological Process (GO)</td>
</tr>
<tr>
<td>ORGAN AND ORGANISM</td>
<td>Organism (NCBI Taxonomy)</td>
<td>Anatomical Entity (FMA, CARO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CELL AND CELLULAR COMPONENT</td>
<td>Cell (CL)</td>
<td>Cellular Component (FMA, GO)</td>
</tr>
<tr>
<td>MOLECULE</td>
<td>Molecule (ChEBI, SO, RnaO, PrO)</td>
<td>Molecular Function (GO)</td>
</tr>
</tbody>
</table>

Open Biomedical Ontologies (OBO) Foundry (ca. 2004)
(Gene Ontology in yellow)

Borrowed from Barry Smith
Gene Ontology

- Cellular component hierarchy
- Cellular and subcellular level
- Supports the annotation of gene products in model organisms
- ~4200 classes
- Developed by the GO Consortium for over 20 years
- Public funding from NIH

http://amigo.geneontology.org/
SNOMED CT

• Largest clinical terminology in the world
• Developed by a consortium of over 40 countries
• Used for clinical documentation and analytics
• ~39,000 concepts
• Somewhat similar to FMA*

https://browser.ihtsdotools.org/
Uberon – Cross-species ontology

- 15,000 classes
- Species-neutral presentation
- Links to species-centric anatomical ontologies
- Supports integration of model organism and human data

http://uberon.github.io/
Others

• General
 • Medical Subject Headings (MeSH) – “A” tree
 • NCI Thesaurus
 • GALEN
 • […]

• Specific species
 • Adult Mouse Anatomy (MGI)
 • Zebrafish Anatomy ontology
 • […]

Anatomy [A]
 Body Regions [A01]
 Musculoskeletal System [A02]
 Digestive System [A03]
 Respiratory System [A04]
 Urogenital System [A05]
 Endocrine System [A06]
 Cardiovascular System [A07]
 Nervous System [A08]
 Sense Organs [A09]
 Tissues [A10]
 Cells [A11]
 Fluids and Secretions [A12]
 Animal Structures [A13]
 Stomatognathic System [A14]
 Hemic and Immune Systems [A15]
 Embryonic Structures [A16]
 Integumentary System [A17]
 Plant Structures [A18]
 Fungal Structures [A19]
 Bacterial Structures [A20]
 Viral Structures [A21]
How many do we need?
Selection criteria for anatomical ontologies

- Human vs. other organisms
- Research vs. clinical
- Gross vs. cellular/subcellular

And...
- Who maintains it?
- Regular updates?
- Intellectual property restrictions?
- Cross-references to other ontologies?

Define use cases first!
If you use more than one

• Terminology integration
 • Unified Medical Language System (UMLS)
 • Integrates FMA, MeSH anatomy, SNOMED CT anatomy, GO Cellular Location
 • BioPortal

• Lexical similarity vs. semantics
 • Prostate in human and mouse: same or different?
 • Different organs with similar functions across species (Uberon)
If you develop a new one

• Ontology development is hard
 • Reuse existing ontologies whenever possible
 • Add cross-references to facilitate integration
 • Partner with ontologists

What is the difference between an ontology and a car?